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ABSTRACT
Cloud computing is a global service. Cloud Service Providers,
such as AWS, allow users to launch VM instances on mul-
tiple data centers (regions) around the world. However,
the network connectivity and bandwidth between these dif-
ferent geographically distributed regions varies significantly
depending on the user’s location. In this paper, we analyze
the network performance between pairs of AWS instances
hosted on all available regions. We leverage our analysis to
derive the optimal hosting region for web service providers
depending on the customer locations.

1. INTRODUCTION
Cloud computing enables users in any part of the world

to access IT services on a pay-as-you-go basis. Such ser-
vices, including VMs and storage resources, are managed by
Cloud Service Providers (CSPs), such as AWS [1] from Ama-
zon, Azure [2] from Microsoft, and Cloud Platform [3] from
Google. CSPs typically host such services on multiple, geo-
graphically distributed data centers, allowing users to launch
VMs on different physical locations. As a result, CSPs of-
fer a truly Distributed Cloud Computing (DCC) experience
to users. For example, AWS offers users with nine different
physical “regions” in which VMs can be launched [4]. These
nine regions, listed in Table 1, are spread across five different
continents.

In such a DCC environment, users have a choice as to
which region(s) their VM(s) should be launch on. While the
efficacy of compute and storage resources does not depend
on the location of the VMs, the networking capability criti-
cally depends on the distance between the user and the VM
hosting location. This is especially important for today’s
data-centric workloads and applications. Typically, users
pick the region closest to them for launching VMs. For
example, students in our cloud computing class at Stony
Brook University (New York) were assigned the US East
(N.Virginia) region by default when using AWS’s EC2 ser-
vice to launch VMs. However, this is not always the optimal
choice. Consider a Web Service Provider (WSP) who is in-
terested in leveraging the AWS cloud to host her website
and associated data sets. While the WSP would benefit
from lower latency by hosting the VMs in a region closer
to her, the latency of the customers of the website will de-
pend on their location relative to the host region. Thus, the
WSP must take into account the location of her potential
customers. For example, a WSP that exports products from
New York to Ireland might benefit from hosting the prod-
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Index Name Location Code

1 US East N.Virginia us-east-1
2 US West Oregon us-west-2
3 US West N.California us-west-1
4 EU Ireland eu-west-1
5 EU Frankfurt eu-central-1
6 South America Sao Paulo sa-east-1
7 Asia Pacific Tokyo ap-northeast-1
8 Asia Pacific Sydney ap-southeast-2
9 Asia Pacific Singapore ap-southeast-1

Table 1: AWS data center regions and locations.

uct catalogues on the EU (Ireland) region as opposed to the
US East region to provide lower latency, and thus a faster
browsing experience, for customers. We refer to the above
example as the WSP problem, and will revisit it later in the
paper as a case study.

In order to make the right VM placement decisions in the
case of a WSP, information about the network performance
between the WSP (source) and the CSP, and the CSP and
the customer (target) is required. In this paper, we analyze
the network performance between pairs of VMs hosted on
different AWS regions. In particular, we analyze the ping
times, the download times, and upload times between all
possible pairs of VMs launched in different regions. The
collected data and its analysis is the major contribution of
this paper. To the best of our knowledge, this is the first
paper to analyze the network performance between pairs of
geographically distributed VMs launched on a commercial
public cloud.

Our experiments reveal that there is significant variation
in network performance (typically, factor of 10 ) between
pairs of VMs launched in different regions. This variation
provides interesting tradeoffs for the WSP problem in terms
of the choice of the host CSP. Surprisingly, we find that there
is little variation in performance for a given pair of regions
with respect to time of day and day of week.

The rest of the paper is organized as follows. We de-
scribe our experimental setup in Section 2. We then present
our network measurement and analysis results in Section 3,
including ping times (Section 3.1), download times (Sec-
tion 3.2), and upload times (Section 3.3). Based on the
measured data, we analyze the WSP problem in Section 4.
We discuss related work in Section 5, and conclude the paper
in Section 6.

2. EXPERIMENTAL SETUP
We set up multiple EC2 micro instances on all nine regions

listed in Table 1. For file download and upload tests, we
create multiple, randomly generated 1MB files, and use scp

for download and upload across regions. For ping times, we
make use of the linux ping command.



Figure 1: Upload times for a 1MB file from
N.Virginia to other regions on 2/20/2015.

2.1 Measurement methodology
For each pair of regions, say source and target, we perform

multiple ping, download, and upload tests between VMs of
these regions. If the source and target region are the same,
we perform the tests between two different VMs in the re-
gion. The tests are conducted over multiple days, including
weekdays and weekends, and are repeated multiple times a
day. In order to eliminate outliers, we discard any measure-
ments that are outside of two standard deviations of the
mean of the collected data. Using this heuristic, we discard
approximately 2% of the data. The results in Sections 3.1-
3.3 are averaged over the remaining (undiscarded) data.

3. NETWORK PERFORMANCE ANALYSIS
In our experiments, we find minor temporal variations in

performance with respect to time-of-day and day-of-week.
The most significant of these variations is shown in Fig-
ure 1, which illustrates our upload times, every hour, from
N.Virginia to the other nine regions on 20th February, 2015.
Observe the spike in upload times at 2am. Since the spike
appears for upload times to all regions, we believe the cause
has to do with the (common) source region, N.Virginia in
this case. We also observed similar spikes at 2am for a few
other days. The spikes were significant only for upload tests.
Our best guess is that the N.Virginia data centers have some
network maintenance scheduled at 2am.

We also found differences in performance between certain
weekday tests and weekend tests. The most significant of
these variations are shown in Figure 2. The measurements
from the specific download test shown in Figure 2 had suf-
ficient variation that they were discarded (based on the two
standard deviations rule).

We now focus on spatial variations in performance with
respect to source and target regions. Figure 3(a) shows
the approximate distance, in miles, between the different
regions. We concisely display the results in the form of a
matrix. Here, the rows represent the source region and the
columns represent the target region. In the matrix, the light
shaded (white) regions indicate lower values and the dark
shaded (red) regions indicate higher values. Note that, for
the case of distances between two regions, the matrix is sym-
metric (transpose of the matrix returns the same matrix).

Figure 2: Normalized performance variation be-
tween certain weekday and weekend tests.

3.1 Ping times
Figure 3(b) shows the results of the ping time tests for

all pairs of regions. We see that the ping times vary signif-
icantly. For example, ping times from N.Virginia (row 1),
ignoring the self ping time (column 1), vary from 70ms (to
Oregon) to 233ms (to Singapore). Interestingly, the ping
times to Ireland are faster than those to N.California. The
variation between minimum and maximum ping times is
much larger for (the rows) Ireland and Frankfurt. Note that
the ping times matrix is not truly symmetric, which is in
agreement with prior studies on ping times [5]. For exam-
ple, the largest ping time from N.Virginia is to Singapore,
whereas the largest ping time to N.Virginia is from Sydney,
although the difference is not too large. As expected, the
lowest ping times are on the diagonal (pings between VMs
in the same region).

Note the dark zones of the matrix corresponding to rows
4-6 and columns 7-9, and likewise, the symmetric zones cor-
responding to rows 7-9 and columns 4-6. These represent
the large ping times between VMs launched in Europe and
South America on one side, and Asia Pacific on the other.
These large ping times are in agreement with the large phys-
ical distances between these regions as shown in Figure 3(a).
Likewise, note the light zones of the matrix corresponding
to rows 7-9 and columns 7-9. These represent the small
ping times between VMs in the Asia Pacific group of re-
gions. Again, these small ping times are in agreement with
the (relatively) shorter physical distances between the Asia
Pacific regions as shown in Figure 3(a). The shorter physical
distance between Oregon and N.California, and Ireland and
Frankfurt, likewise results in lighter shaded zones in rows
and columns 2-3 and 4-5, respectively.

3.2 Download times
Our download times experiments involve downloading ran-

domly (pre-)generated 1MB files from various source regions
to the target region. Figure 4(a) shows the results of the
download times from source regions (columns) to target re-
gions (rows). For a given target, ignoring the self download
times, we see significant variation in download times. While,
qualitatively, this is to be expected, it is interesting to note
the quantitative variations. For N.Virginia, there is a factor
3 difference between maximum (from Sydney) and minimum
download times (from Oregon). For Ireland and Frankfurt,



(a) Matrix for geographical distance (in miles). (b) Matrix for ping times (in ms).

Figure 3: Matrices showing (a) the distance, in miles and (b) ping times, in milliseconds, between VM
instances located in different AWS regions.

the difference is almost a factor 10.
Note, again, the dark zones of the matrix corresponding

to rows 4-6 and columns 7-9, and likewise, the symmetric
zones corresponding to rows 7-9 and columns 4-6. Likewise,
note the light zones of the matrix corresponding to rows 7-9
and columns 7-9. This is similar to our observations for the
ping times.

3.3 Upload times
For upload tests, we upload randomly generated 1MB files

from source regions to various target regions. Figure 4(b)
shows our results for upload times from source regions (rows)
to target regions (columns). The results for upload times are
very similar to those for download times, and this similar-
ity can be easily observed by looking at the heat map and
numbers in Figures 4(a) and 4(b).

4. CASE STUDY: THE WSP PROBLEM
We now discuss a simple case study that highlights the

benefits of the above network performance measurements.
Consider a WSP that is located in a given region, Rw, and
whose potential customers are located in a different region,
Rc. For now, we assume that the customers are located in
one region; we will soon relax this assumption. The WSP
is interested in hosting the web service and associated data
on AWS, and would like to optimize the placement of their
VMs by finding the optimal hosting region. The location of
the hosting region, Rh, is critical for the performance of the
WSP. The “closer” (in terms of network connectivity and
performance) Rh is to Rw, the smaller is the time taken by
the WSP to upload new data. Likewise, the closer Rh is
to Rc, the smaller is the access time for WSP’s customers.
Note that we are ignoring the access time between Rc and
the customers; we will consider this explicitly in future work.

Let 0 ≤ α ≤ 1 be the relative importance of the WSP’s
upload times to that of the customers’ access latency. Then,
the optimal hosting region, R∗

h, can be derived by finding
region Ri that minimizes the following objective function:

Obj(Ri) = α · UL(Rw, Ri) + (1 − α) · DL(Rc, Ri)

Here, UL and DL are the Upload and Download matrices
shown in Figure 4. Intuitively, one would expect that R∗

h is
either Rw or Rc. In fact, if we rely on the Distance matrix in
Figure 3(a) to optimize the objective function, our optimal

hosting region would be Rw or Rc. Surprisingly, this is not
always true. Consider the case where α = 0.5 and the WSP
is in Rw = Tokyo and the customers are in Rc = Ireland.
In this case, the value of the objective function, Obj(Ri),
for Ri = Rw is about 2.95, and for Ri = Rc is about 2.9.
However, for Ri = N.Virginia, the value is about 2.55. This
means that hosting the data in the N.Virginia region would
provide 12% more value than hosting it locally in Tokyo or
Ireland. Similarly, we get about 10% more value by host-
ing the data in N.Virginia when the WSP is in Ireland or
Frankfurt, and the customers are in Singapore. Our above
optimization strategy can be easily extended to the problem
of finding the optimal hosting regions when customers up-
load data to an intermediate region, and the service provider
downloads customer data from the intermediate region and
provides some results (here, Rw and Rc are interchanged).

Now consider the more challenging scenario where the cus-
tomers are spread over two regions, Rc1 and Rc2, with rel-
ative weights 0 ≤ β ≤ 1 and (1 − β). In this case, the
objective function is:

Obj(Ri) = α ·UL(Rw,Ri)+ (1−α) · {β ·DL(Rc1, Ri)+ (1−β) ·DL(Rc2, Ri)}

We can again use the optimization approach to derive the
Ri that minimizes the above objective function by leverag-
ing the Download and Upload time matrices from Figure 4.
In this case, the optimal region provides 5-12% more value
than hosting at the source (WSP) region. Likewise, the ob-
jective function can be extended to consider multiple WSP
locations and multiple customer locations.

Our empirical measurements allow us to easily optimize
for the hosting regions. Understanding the causes behind
these optimal hosting regions will be part of future work.

5. RELATED WORK
We now discuss related work that focuses on performance

analysis and measurement of public clouds. CloudCmp [6]
examines the performance of public cloud provider VMs.
The authors analyze the network performance between VMs
of the same data center, and between VMs of different data
centers hosted in the US. Hajjat et al. [7] conduct a measure-
ment study of EC2-deployed VMs to understand the impact
of provider-specified policies and limits. The authors do an-
alyze the network performance between VMs launched in
the N.Virginia and N.California regions. Our study specif-



(a) Matrix for 1MB download times (in s). (b) Matrix for 1MB upload times (in s).

Figure 4: Matrices showing (a) the download times, in seconds and (b) the upload times, in seconds, for a 1
MB file size between VM instances located in different AWS regions.

ically analyzes the network performance of VMs hosted in
all 9 regions (7 countries), and reveals some interesting re-
sults for such geographically distributed VMs, as discussed
in Section 3.

Wang et al. [8] analyze the impact of virtualization on
network performance of EC2 instances. Their study reveals
that network performance is impacted by virtualization, and
is often unstable. Schad et al. [9] benchmark EC2 with the
objective of analyzing variance in the cloud. They empiri-
cally analyze EC2 from various standpoints - CPU perfor-
mance, memory speed, disk I/O, network, instance startup,
and S3 access time. Palankar et al. [10] study the Amazon
S3 service and evaluate file transfer times between EC2 and
S3. Gandhi et al. [11, 12] examine the compute capacity of
cloud VMs. In all of the above studies, the authors focus
on the performance of instances launched in a given region;
our focus in this paper is on the performance of the network
connectivity between instances launched in different regions.

6. DISCUSSION AND CONCLUSION
Today’s geographically distributed cloud computing plat-

forms provide users with a truly DCC experience. However,
leveraging DCC requires an understanding of the trade-offs
between different hosting locations. In this paper, we use
AWS’s EC2 as our case study of a DCC system, and mea-
sure the network performance between VMs launched in nine
different EC2 hosting regions. Our measurements of ping
times, download times, and upload times reveal that there
is significant variation in network performance between dif-
ferent regions. By ignoring these variations, users’ AWS-
deployed applications can suffer severe performance losses.
We demonstrate, using a simple web service provider exam-
ple, that by leveraging our AWS DCC network performance
measurements, users can benefit from the distributed nature
of cloud computing platforms and optimize their application
performance accordingly.

In future work, we will further expand our measurement
study to include path information and delays between VMs
in different regions. This will help us understand the bidirec-
tional connectivity between different regions and will allow
us to analyze the causes of network delays in more detail, as
has been emphasized in recent work [13]. We will also con-
sider more interesting and practical use cases such as content
delivery networks provided by Akamai and Amazon, and ex-

amine the impact that the content hosting location has on
end-to-end performance. Further, we will analyze the net-
work performance between hosting locations and end-users
by leveraging remote (Atlas [14]) probes.
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