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Abstract—Many online application services are now provided
by cloud-deployed VM clusters. Although economical, VMs in the
cloud are prone to interference due to contention for physical
resources among colocated users. Worse, this interference is
dynamic and unpredictable. Current provider-centric solutions
are application-oblivious and are thus not always aware of the
user’s SLO requirements or application bottlenecks. Further,
such solutions rely on VM scheduling and migration, approaches
that are not agile enough to mitigate volatile interference.

This paper presents DIAL, an interference-aware load bal-
ancer that can be employed by cloud users without requir-
ing any assistance from the provider. DIAL addresses time-
varying interference by dynamically shifting load away from
compromised VMs without violating the application’s tail latency
SLOs. The key idea behind DIAL is to infer the demand for
contended resources on the physical hosts, which is otherwise
hidden from users. Estimates of the colocated load are then
used to drive the load distribution for the application VMs.
Our experimental results on OpenStack and AWS clouds show
that DIAL can reduce application tail latencies by as much as
70% and 48% compared to interference-oblivious and existing
interference-aware load balancers, respectively.

I. INTRODUCTION

Cloud computing users can access economical and virtually
unlimited computing resources, allowing them to deploy their
applications in the cloud, and let the applications grow elasti-
cally with them. Many online services and applications, such
as Netflix and Expedia, are now provided by cloud-deployed
Virtual Machines (VMs). Users typically deploy multiple VMs
on the cloud to host their application; load balancers are then
employed to facilitate scaling by distributing incoming load
among the VMs.

Despite the benefits of cloud computing, user applications
deployed in such environments can experience undesirable
performance effects, the most severe of which is interference.
Performance interference is caused by contention for physical
resources, such as CPU, network, or last-level cache, among
colocated VM users. While certain resources, such as CPU,
can be partitioned among colocated VMs, other resources,
such as processor caches, are notoriously hard to partition [1];
regardless, static partitioning of resources can adversely im-
pact resource utilization in cloud data centers. Worse, resource
contention among independent colocated VMs is often dy-
namic and unpredictable [2]. Dynamic interference in public
and private cloud environments can degrade application per-
formance by as much as 27× [3, 4, 5], despite provider efforts
to isolate performance [6, 7, 8].

Existing provider-centric solutions are not always aware of
the cloud user’s Service Level Objective (SLO) requirements
or the user application’s bottleneck resources; this is especially
true in public clouds where providers have limited visibility
into user deployments [6]. Provider-centric solutions focus

on co-scheduling VMs that do not contend on the same
resource(s) [5, 7, 9, 10, 11]. However, since interference is dy-
namic and can emerge unpredictably, statically co-scheduling
VMs will not suffice. VM migration can help in this case, but
interference is volatile and short-lived, often lasting for only a
couple minutes [2]; by contrast, migration can take several
minutes [12] and can incur overheads [13], especially for
stateful applications [14]. Relying only on provider-centric so-
lutions for interference leaves application performance, which
is often the most important criteria for users, at the mercy of
providers.

We present DIAL, a dynamic solution for mitigating inter-
ference in load-balanced cloud deployments. Specifically, we
consider a cloud-deployed web application hosted on multiple
VMs behind a load balancer, and experiencing unpredictable
interference from colocated VMs (owned by other cloud ten-
ants). DIAL is user-centric, meaning that it can be employed
directly by cloud users without requiring any support from the
cloud provider. Further, since DIAL is user-centric, it is aware
of the user application and its SLOs, and can accordingly react
to the onset or termination of interference by quickly adapting
the load distribution among application VMs.

The main challenge for user-centric approaches is the lack
of visibility into colocated applications. Our key insight to
addressing this problem is to infer contention by monitoring
the application performance from within the user deploy-
ment and estimating the colocated load that can induce the
observed level of performance degradation. Importantly, we
do so without requiring any assistance from colocated users
or the hypervisor. We find that, in addition to estimating
the colocated load, it is also important to determine the
resource that is under contention, as this dictates the impact
of interference on performance.

To address the dynamic nature of interference, DIAL adapts
the load distribution of incoming requests among user VMs.
We introduce a model for interference, based in queueing
theory [15, 16], to understand the impact on performance of
contention at the shared physical resources. We then optimize
the time-varying load distribution among the VMs to minimize
tail latency, thus guiding our design of DIAL.

We implement DIAL on HAProxy [17], and evaluate
DIAL’s benefits using popular web applications with varying
workload under CPU, network, disk, and cache interference on
OpenStack and AWS clouds. Our experimental results show
that DIAL reduces 90%ile response times by as much as 70%
compared to interference-oblivious load balancers. Further,
compared to existing interference-aware solutions, including
those that rely on the hypervisor to detect interference, DIAL
reduces tail response times by as much as 48%.



Fig. 1. Illustration of a load-balanced cloud application deployed on multiple
foreground (fg) VMs experiencing interference from background (bg) VMs.

II. DIAL SYSTEM DESIGN

DIAL is a user-centric interference mitigation solution de-
signed for clouds that directly empowers the users. DIAL
can complement provider-centric solutions, especially when
provider efforts to mitigate interference are not enough to
avoid specific SLO violations for user applications. We first
provide an overview of DIAL, and then discuss the design of
its two key contributions: (i) estimating co-located load, and
(ii) optimizing the interference-aware load distribution.
A. Overview and Scope

We consider user cloud deployments consisting of multiple
VMs to scalably handle incoming traffic; any of the VMs could
be under interference at any time. Multi-VM applications often
employ an internal scheduler or load balancer. In this paper
we focus on load-balanced web applications.

Figure 1 illustrates a typical multi-tier web application,
similar to the ones we employ in our experiments (see Sec-
tion III-B), composed of multiple tiers including application
and data tiers. Our focus in this paper is on the application
tier which is behind the load balancer. The web application
is hosted on multiple foreground (fg) VMs, each of which
is hosted on a physical machine (PM); we highlight the
application tier fg VMs in Figure 1. The incoming requests
for the user application are load balanced among fg VMs via
a load balancer (LB). Each PM may also host background (bg)
VMs that do not belong to the fg user, as shown in Figure 1.
The fg and bg VMs on a PM can contend for shared physical
resources, such as CPU, network bandwidth (NET), disk I/O
bandwidth (DISK), and last-level-cache (LLC), resulting in
interference. Note that the fg user does not have visibility into
the bg VMs; in fact, the fg user is unaware of bg VMs.

We assert that the LB is ideally suited to mitigate the effects
of volatile interference. Our solution, DIAL, is a user-centric
Dynamic Interference-Aware Load balancer. The design of
DIAL addresses two key questions:

(i) How can users estimate the interference that their
VMs are experiencing without any assistance from the
provider, hypervisor, or colocated users? (Section II-B)

(ii) Given this information, how should users dynamically
distribute load among their VMs to minimize tail laten-
cies in the presence of interference? (Section II-C)

B. User-Centric Estimation of Interference
To effectively mitigate interference, DIAL must first es-

timate the amount of interference that each user VM is
experiencing. To this end, we define amount of interference:

Total resource usage (%) →
0 25 50 75 100

90
%

ile
 R

es
po

ns
e 

tim
e 

(m
s)

 →

0

50

100

150

200

250
CPU contention
LLC contention
Network contention

Fig. 2. Performance of an OpenStack-deployed Apache web server under
interference from colocated VMs running microbenchmarks.

the fraction of available physical resources that are in use by
colocated background VMs. In the context of Figure 1, the
amount of interference is the fraction of physical resources on
a PM that are in use by all the colocated bg VMs, and are
thus unavailable to the fg VM on that PM. As we show below,
estimating the amount of interference is not an easy task as it
requires analysis, classification, and modeling of interference.
1) Impact of interference on tail latencies

Interference is known to impact application response
times [3, 4, 5]. DIAL leverages this fact to estimate the amount
of interference that an fg VM is experiencing because of
resource contention created by colocated bg VMs. Specifically,
DIAL aims to infer the amount of interference, or resource
contention, that the bg VMs must be creating to effect the
observed rise in fg response times.

Figure 2 shows the impact of different types of resource
contention on the 90%ile response time, T90, of an OpenStack
cloud-deployed Apache web server VM hosting files and
driven by the httperf load generator. We create contention for
this fg VM by running various microbenchmarks in colocated
bg VMs. The x-axis denotes the percentage of total resource
usage, which is the sum of resource usage by the fg VM and
all colocated bg VMs, normalized by peak resource capacity
or bandwidth. For example, if the total network bandwidth
usage is 80MB/s, and the peak network bandwidth is about
115MB/s, then the resource utilization is 80/115 ≈ 0.7. We
defer the details of our experimental setup and resource usage
calculation to Section III, where we also discuss our other,
more realistic, web applications.

We make two observations from this figure:
(i) response time increases considerably under interference,
(ii) the relationship between total resource usage and response
time depends on the exact resource under contention.
Detecting interference: The first observation can be used by
DIAL to detect when the fg application VM is under inter-
ference. Specifically, from Figure 2, we see that application
response times, or T90, are initially low and stable (left of the
graph). However, once the total resource usage increases (right
of the graph), because of the increased resource demand from
bg VMs, the fg response times rise sharply. We also observe
the same behavior in other environments, such as AWS clouds.
Based on this observation, DIAL signals interference when T90
goes beyond the 95% confidence intervals (around the mean)
observed during no or low interference. Validation experiments
for realistic web applications in Section IV show that our
detection approach provides a low false positive rate (∼ 6%).



Need for identifying the source of interference: The second
observation suggests that using tail response times to estimate
interference will require knowledge of the specific resource
that is under contention.
2) Classifying interference using Decision Trees

Our next task is to classify the source of interference, which
is defined as the dominant resource under contention. Note that
it is possible for several resources to be simultaneously under
contention; however, we only consider dominant resource
contention. We defer the analysis of multiple resources under
contention to future work. Our key idea in classification is to
observe the impact of interference on easily observable user
metrics such as CPU utilization, I/O wait time, etc., which can
be obtained from within the VM via the /proc subsystem. In
general, one can monitor all available metrics and use feature
selection algorithms, such as LASSO or ridge regression, to
derive the list of useful features, which can then be used for
classification.

DIAL uses decision trees to classify contention. The deci-
sion tree classifier is trained by running controlled interference
experiments using microbenchmarks and monitoring the met-
rics in each case. After training, the decision tree can classify
the source of interference, even for unseen workloads, based
on the observed metric values (Section IV-B).
Distinguishing interference from workload variations: To
distinguish interference from workload variations, DIAL nor-
malizes the observed metric values with predicted values based
on monitored workload intensity. Prior work has shown that
linear models can accurately predict CPU usage based on
workload intensities [18]. We thus use linear regression to
predict the metric values as a linear function of the number
of requests seen in the past monitoring interval; since web
applications often serve different types/classes of requests,
such as browse, store, etc., we consider the number of requests
of each type in our prediction.

The intuition behind this approach is that, in the absence
of interference, the normalized values will be close to 1
under workload variations. The decision tree can thus use
the deviation of the observed metrics from the normalized
metrics to distinguish workload changes from interference.
Experimental results in Section IV highlight the efficacy of
our classifier under various contentions (91–93% accuracy).
3) Queueing-based model for interference

The final step is to use the classification information to
estimate the amount of interference, which is the fraction of
resources that are in use by colocated bg VMs. Once we have
these estimates, DIAL can redistribute incoming load accord-
ingly to mitigate the impact of interference (Section II-C).

From Figure 2, we see that tail response times increase non-
linearly with the total usage of the resource under contention.
Recall that the total resource usage is the sum of resource
usage of the fg VM (can be monitored by the fg user) and
all colocated bg VMs (cannot be monitored by the fg user).
Our key idea is to model this non-linear relationship for
each resource; this allows inferring the resource usage of the

colocated bg VMs based on observed fg tail latencies, which
in turn gives us the amount of interference.
Modeling interference: We employ queueing theory to model
the non-linear relationship between resource usage and tail
latencies. Queueing models suggest that the tail response time
for an application is inversely proportional to the unused
capacity of the VM [15]. Mathematically, T90 ∼ 1/(1−ρfg)α,
for some parameter α, where ρfg is the resource load of the fg
application (such as CPU utilization or I/O bandwidth utiliza-
tion), normalized to peak resource usage; that is, 0 ≤ ρfg ≤ 1.
Prior work [19] has shown that α = 2 works well for practical
settings given the high variability in real workloads. However,
such models do not account for interference.

Under interference, the fg application experiences congested
resources due to colocated bg VMs. As a result, the application
experiences higher load than it would in the absence of inter-
ference. We model this effect by adding the resource usage
of colocated bg VMs to that of the fg VM, resulting in fg re-
sponse times being inversely proportional to (1−(ρfg+ρbg)).
The sum of loads exerted by the fg and bg VMs, (ρfg + ρbg),
represents the normalized total utilization of the resource. We
thus approximate 90%ile response time as:
T90 = c0 + c1/(1− ρfg − ρbg) + c2/(1− ρfg − ρbg)2, (1)

where ~c is the coefficient vector that depends on the specific
resource under contention. The polynomial function in Eq. (1)
is inspired by prior work on queueing systems [20, 21] to
interpolate between low load and high load regimes.

To determine the coefficients, we train the model in Eq. (1)
by creating different levels of resource usage and monitoring
the T90 of fg VMs (see Section II-D2). We then use multiple
linear regression over this training data to derive the resource-
specific coefficients. While Eq. (1) is inspired by queueing
models, we find that it is able to accurately track the relation-
ship between tail response times and resource usage even for
realistic web applications as we show in Section IV.
Applying the model to estimate interference: Eq. (1) can be
easily employed to estimate the amount of interference. After
detection and classification, the fg user can estimate ρbg by
monitoring T90 and ρfg , and solving Eq. (1) for ρbg .

C. Interference-Aware Load Balancing
Interference-aware load balancing is the key component

of DIAL. When there is no interference, balancing the load
equally among all VMs works well to provide low response
times. However, if one of the VMs is facing interference (can
be estimated via the above-described interference modeling),
then its share of the load must be adjusted accordingly.

One might think that reducing the share of load in pro-
portion to the available capacity at the compromised VM,
(1− ρbg), should work well. Unfortunately, this approach can
be far from optimal, as we show via experiments in Section IV.
1) Minimizing tail response times

To minimize application tail response times under interfer-
ence, we again employ queueing theory. Consider a cluster of
n VMs, with VM i facing interference of ρbg,i. Let the fraction



of total incoming load that is directed to VM i be pi; we refer
to pi as the weight assigned by the LB to VM i. If the total
arrival rate for the application is a, the arrival rate for VM i
is a · pi. Our goal is to determine the pis that minimize the
90%ile response time, T90. To obtain a simple closed-form
expression for the theoretically optimal pis, we model each
VM as an M/M/1 system [15]. Under this assumption, T90 for
a cluster of n VMs can be approximated as:

T90 ≈
n∑

i=1

pi · ln 10/(ri − a · pi), (2)

where ri represents the throughput of VM i (with contention).
Since interference reduces the throughput of the compromised
VM, we set ri = r ·(1−ρbg,i), where r is the peak throughput
of an application VM. For example, if the peak throughput of
our Apache server is r = 1000 req/sec, and it is experiencing
an estimated interference of ρbg = 0.6, then we set r = 1000×
0.4 = 400 req/sec.

Note the ln 10 term in the numerator. This comes from the
term − ln(1 − 0.9), where 0.9 is due to the 90%ile response
times. If we instead focus on, say, 95%ile response times,
the only change in Eq. (2) will be ln 20 instead of ln 10.
Interestingly, the optimization for pis discussed below does
not depend on this constant value, and thus our results also
apply, as-is, to other percentiles of response times.

Given a (which can be monitored) and ri (derived as dis-
cussed above using interference estimation from Section II-B),
T90 can be expressed as a function of pi via Eq. (2). We
can now derive the theoretically optimal weights, pis, that
minimize T90 in Eq. (2) using calculus. Due to lack of space,
we omit the proof and present the final result here:

p∗i =

(
ri

n∑
j=1

√
rj −

√
ri

n∑
j=1

rj + a
√
ri

)
/

(
a

n∑
j=1

√
rj

)
(3)

Note that p∗i depends on the estimates of ri, thus necessitat-
ing the interference estimation of Section II-B. Also note that
p∗i depends on the total arrival rate, a. This is to be expected
since, for example, if the arrival rate is very low, we can
send all requests to the VM with the highest throughput to
minimize response times; however, if the arrival rate is very
high, then a single VM cannot handle all requests, and we have
to distribute the load. Importantly, both ri and a can change
unpredictably at any time (ri due to interference and a due to
variable customer traffic), motivating the need for a dynamic
solution instead of existing static solutions.

D. The DIAL Controller
The DIAL controller implements dynamic interference-

aware load balancing as follows:
0) Monitoring: DIAL monitors the fg application’s T90, arrival

rate, a, fg load, ρfg,i, and classification metrics (e.g.,
connection time), averaged every interval, for all fg VMs.

1) Detection: DIAL signals interference if T90 exceeds the
95% confidence bounds for two successive monitoring
intervals.

2) Classification: DIAL next employs the decision tree to
identify the dominant resource under contention, if any.

3) Estimation: DIAL then uses the T90 and ρfg,i values in
Eq. (1), with the dominant resource-specific coefficients,
to estimate the interference, ρbg,i. DIAL then adjusts the
interference-aware throughput for fg VM i by (1− ρbg,i).

4) Interference-aware load balancing: Given these estimates,
and the monitored a value, DIAL derives the LB weights,
~p∗, via Eq. (3), and inputs them to the LB.

We continue monitoring the VMs’ performance to detect
further changes in interference and to detect the end of
interference. To this end, we ensure that a small number of
requests are sent to the affected VMs so we can monitor
the progress of interference; we can also use probes for this
purpose, as suggested by recent work [22]. When T90 returns
to normal (for successive intervals), we reset the LB weights.

The monitoring interval length employed by the controller
depends on the stability of the fg application and the noise in
the system. We use a length of 10s based on the sensitivity
analysis for our specific setup as discussed in Section IV-A.
1) DIAL implementation

We implement the above DIAL controller logic using: (i)
a C program to execute the detection, classification, and
estimation tasks, and (ii) a set of bash scripts to monitor
metrics from the /proc subsystem and the LB logs, and
to communicate with the LB to reconfigure the weights. The
overhead of the DIAL controller is negligible in practice since
the decision tree building, response time modeling, and LB
weights optimization are performed offline, and only need to
be leveraged during run time using the monitored metrics.
Our evaluation results show that the average increase in CPU
utilization of the LB VM under DIAL is about 2%. Of
course, if the CPU usage at the LB VM is a concern, we
can implement DIAL on a separate VM. In our experiments,
we use the HAProxy LB [17]; however, DIAL can also be
integrated with the nginx and Apache LBs.
2) Training the DIAL controller

DIAL requires some model training to build the decision
tree (Section II-B2) and derive the coefficients of the es-
timation model (Eq. (1)). The above training tasks can be
performed offline on a dedicated server in a cloud environment
by controlling the bg VMs to run microbenchmarks at different
intensities while monitoring relevant metrics. In a private
cloud environment, such as OpenStack, we can set aside a
dedicated host using Availability Zones and Host Aggregates.
In some public cloud environments, such as Amazon, dedi-
cated hosts can be rented on a pay-as-you-go basis. We use
these options for training the DIAL controller using a simple
set of microbenchmarks and then highlight the performance
improvements under a different set of realistic workloads that
were not used for training (see Section IV-B).

III. EXPERIMENTAL SETUP AND METHODOLOGY

We now detail our cloud environments, fg applications (that
face contention), and bg workloads (that create contention).



Fig. 3. Illustration of our OpenStack cloud setup.

A. Cloud environments
We set up two cloud environments for our evaluation, an

OpenStack based private cloud environment and an AWS-
based public cloud environment. Unless specified otherwise,
we use the OpenStack environment.

OpenStack-based private cloud: Figure 3 depicts our exper-
imental setup. We use an OpenStack Icehouse-based private
cloud with several dedicated Dell C6100 physical machines,
referred to as PMs (each with two 6-core CPUs and 48
GB memory). All PMs are connected to a network switch
via a 1Gb Ethernet cable. Our experiments reveal that the
maximum achievable network bandwidth is about 115 MB/sec
(we flood the network using a simple load generator, httperf,
and measure the peak observed bandwidth under various
request rates and request sizes). Likewise, we find that the
maximum achievable memory and (sequential) hard disk drive
I/O bandwidths are about 11GB/sec (using RAMspeed) and
about 50MB/sec (using sysbench), respectively.

AWS-based public cloud: We rent 10 c4.large instances, each
with 2 vCPUs and 3.75GB of memory, in AWS EC2’s US East
(N. Virginia) region. We also rent a c4 dedicated server (PM)
for hosting one of the instances colocated with bg VMs.

B. Foreground (fg) applications
We employ two multi-tier web applications for our fg eval-

uation, CloudSuite [23] and WikiBench [24]. Unless specified
otherwise, we use CloudSuite as our fg application.

CloudSuite: The CloudSuite 2.0 Web Serving benchmark is
a multi-tier, multi-request class, PHP-MySQL based social
networking application. The benchmark uses several request
classes such as HomePage, TagSearch, EventDetail, etc.

Our CloudSuite setup consists of: (i) Faban workload gen-
erator for creating realistic session-based web requests; we
set the number of users to 1000 for OpenStack and 5000
for AWS; the think time is 5s (default). (ii) HAProxy LB
distributes incoming http requests (from Faban) among the
back-end application VMs. We use the default Round Robin
policy, similar to the LBs under Google Cloud Platform [25],
unless stated otherwise (as in Section IV-F where we compare
with other policies). (iii) Application VMs installed with
Apache, PHP, Memcached, and an NFS-Client. We employ 3
application VMs in OpenStack and 10 in AWS. (iv) A MySQL
server and an NFS server, hosting the file store, are installed

on separate, large VMs (to avoid being the bottleneck).

WikiBench: WikiBench is a Web hosting benchmark that
mimics wikipedia.org. Our WikiBench setup consists of: (i)
wikijector load generator to replay real traffic from past traces
of requests to Wikipedia, (ii) HAProxy LB, (iii) Three servers
running the MediaWiki application (the same application that
hosts wikipedia.org), and (iv) a MySQL database to store data
from the Wikipedia database dump.

C. Background (bg) workloads
In our experiments, we emulate interference by employing

several bg workloads to create contention for the fg applica-
tion. This approach of creating interference, which is similar
to other prior works such as ICE [1], Paragon [11], and
DeepDive [6], allows us to reproduce the same interference
pattern to fairly evaluate performance with and without DIAL.
The bg workloads are hosted on VMs colocated with the
fg application layer VMs. Each fg VM under interference is
hosted separately from other fg VMs, and is colocated with bg
VMs. We first employ microbenchmarks to stress individual
resources for analyzing fg interference. We then employ test
workloads to evaluate DIAL for fg applications under realistic
cloud workloads.

Microbenchmarks: We employ: (i) stress-ng tool on bg VMs
to create controlled CPU contention; (ii) httperf load generator
(on a separate VM and PM) to retrieve hosted files from the
colocated bg VMs at different, controllable request rates to
create NET contention; (iii) dcopy benchmark on bg VMs to
create LLC contention; and (iv) stress on bg VMs to create
DISK contention.

Test workloads: We employ: (i) SPEC CPU to create CPU
contention, (ii) Memcache server (driven by mutilate client)
to create NET contention, (iii) STREAM to create LLC
contention, and (iv) Hadoop running TeraSort with a large
data set to create DISK contention.

D. Resource usage monitoring
• NET: We use the dstat Linux tool to monitor the used NET

bandwidth for bg and fg VMs. We then normalize their sum
by the peak network bandwidth to get NET resource usage.

• CPU: We consider fair-sharing of the possibly over-
committed PM cores among VMs to compute CPU usage.
If a PM has n cores available and all VMs together require
m cores, then the CPU usage of each VM is normalized
by max{m,n}. For example, a PM may have 12 cores
(n = 12); if we launch 4 VMs with 4 vCPUs each on this
PM, since oversubscription is allowed, then the total request
is 16 (m = 16). If one of the VMs has a CPU usage of x%
out of 400% (or y% out of 100%), then we estimate its CPU
usage as x

16 (or 4·y
16 ). Thus, if all 4 VMs are at 400% each

(or 100% per vCPU), then total usage is 1 or 100%.
• LLC: Since memory bandwidth for a VM cannot be easily

monitored, we employ the RAMspeed benchmark to mea-
sure the available memory bandwidth. We obtain this band-
width for each experiment and then estimate the LLC usage
by computing the difference between peak bandwidth and
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Fig. 4. Observed and modeled response times for CloudSuite under various
resource contentions via microbenchmarks. Average modeling error is 6.1%.

experiment bandwidth. Finally, we normalize this difference
by peak bandwidth to estimate LLC usage.

• DISK: Disk usage typically depends on the access pattern
(sequential vs. random). We thus use the same approach
as for LLC, but with sysbench instead of RAMspeed, for
estimating DISK usage.

IV. EVALUATION

We first present results for classification and estimation
of test workloads. We then present results for performance
improvement (reduction in T90) under DIAL for OpenStack
and AWS setups for CloudSuite and WikiBench. Unless
mentioned otherwise, we compare performance under DIAL
with performance without DIAL, referred to as baseline. In
Section IV-F we compare DIAL against existing interference-
aware techniques that are popularly employed.

A. Evaluating detection, classification, and estimation
Detection: The crosses in Figure 4 show the impact of
different resource contentions, created by microbenchmarks,
on CloudSuite’s HomePage request class response time under
the OpenStack setup. Every data point (cross) in Figure 4 is
obtained by averaging the 90%ile of response times in every
monitoring interval over three different experiments, each of
which takes 300s. To detect contention, we use the 95%
confidence intervals around the mean (see Section II-B1) to
obtain the following detection rule for both the OpenStack and
AWS setups: T90 > 5ms, for HomePage; similar rules can be
derived for other request classes. We run several experiments
using the bg test workloads and find that our detection rule
results in a low false positive rate of 5.7%.

Prior work has employed similar techniques to detect and
analyze interference using hardware performance counters
such as CPI [26], MIPS [11], cache miss rate [1, 2], etc.; such
values are visible to the hypervisor, but are difficult and often
infeasible to obtain from within the VM. We tried accessing
such counters through VMs hosted by AWS EC2, Google
Cloud Platform, and our OpenStack environment, but the
values were either not supported or were incorrectly reported
as all zeros; similar observations were made for AWS EC2
VMs in prior work [2]. By logging application response times
to analyze interference, DIAL can be employed directly by
cloud users without requiring access to such counters.

Classification: We monitor the user space CPU utilization,

Fig. 5. Illustration of our trained decision tree created using WEKA. Leaves
represent the contention classification. Numbers in the leaf represent the total
classification instances (left) and the number of misclassified ones (right).

usr, the kernel space CPU utilization, sys, the I/O wait time,
wai, the rate of segments retransmitted, seg ret, and the
90%ile time taken to establish a connection to the application
VM, Tc (via HAProxy logs). We normalize usr and sys using
predicted values to distinguish from workload variations, as
discussed in Section II-B2. The usr and sys metrics can
help detect CPU and LLC contention as the processor might
have to do more work under these contentions. wai could
potentially help classify DISK contention. Finally, seg and Tc
could help classify NET contention because of the reduced
available network bandwidth.

Our decision tree for CloudSuite, trained using microbench-
marks, is shown in Figure 5. The decision tree is generated
using WEKA [27]; in particular, WEKA determines the nodes
and cutoff values using the J48 algorithm. The tree structure
may be different for different applications. However, we expect
the high level rules to be the same. For example, we expect
that LLC interference will lead to an increase in CPU usage.

Our 10-fold cross-validation error is 7.8%. Our classifier
shows that high (normalized to predicted contention) usr
signals LLC contention, possibly because more work has to
be done to service the LLC misses. A high Tc signals NET
contention, which seems intuitive. A moderate drop in usr and
moderate rise in sys signals CPU contention; we believe this
is because throughput decreases under contention, resulting
in lower usr, and thus exhibiting a relative rise in sys. A
high wai suggests DISK contention. Finally, a moderate rise
in seg ret and Tc signals workload variations (denoted as
∆ load in Figure 5).

We also evaluated our classifier using test workloads that
were not seen during classifier training. Here, we run 50
total experiments using 10 experiments each for Memcache
(NET contention), SPEC (CPU contention), Hadoop (DISK
contention) and STREAM (LLC contention), in addition to
10 experiments under varying CloudSuite application load.
Table I summarizes our results. The decision tree successfully
classifies 44 of the 50 test instances, including change in
workload. The “misclassifications” for DISK contention (as
LLC) under Hadoop are because of the numerous memory
accesses made by the colocated Slave VMs; we believe that
Hadoop interference cannot always be classified as a single
resource because of its complex and dynamic resource needs.



Class workload NET CPU DISK LLC
Accuracy 70% 100% 90% 80% 100%

TABLE I
EVALUATING OUR INTERFERENCE CLASSIFICATION USING TEST

WORKLOADS. OVERALL ACCURACY=88%.
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Fig. 6. Smaller monitoring interval lengths lead to higher inaccuracy.

Estimation: The solid lines in Figure 4 show our modeling re-
sults for CloudSuite interference estimation (see Section II-B3)
under different resource contentions via training. Our average
modeling error across all contentions is 6.1%. If we instead use
α = 1 in Eq. (1) to model T90 simply as c0+c1/(1−ρfg−ρbg),
the modeling error increases to about 15%. However, when
we increase the value of α beyond 2, we find only modest
improvements in accuracy.

Effect of monitoring interval length: We use a metrics
monitoring interval length of 10s for the above evaluation.
Experimentally, we find that shorter interval lengths can lead
to inaccurate classification and estimation due to system noise
and load fluctuations. For example, Figure 6 shows the predic-
tion error for CPU metrics used in our decision tree classifier
(see Section II-B2). We see that an interval of 1s or 5s can
lead to high inaccuracy. On the other hand, intervals larger
than 10s do not significantly improve accuracy. Likewise, we
find a significant increase in the number of false positives for
interference detection at smaller interval lengths, leading to
cases where DIAL overlooks interference. For these reasons,
we choose an interval length of 10s; prior work has also
reported such reaction times to avoid rash decisions [2, 28, 29].

B. Evaluating DIAL under real workloads
Figure 7 illustrates our experimental results for CloudSuite

under OpenStack for various contentions created using test
workloads in bg VMs. The y-axis shows the tail response time
for CloudSuite across all request classes. Here, we create NET,
DISK, and LLC contention for apache1 VM using Memcache,
Hadoop (running TeraSort), and STREAM, respectively. We
create CPU contention for apache2 using SPEC.

We see that DIAL significantly reduces tail response times,
when compared to the baseline, under all contentions; the
reduction ranges from 16% under DISK contention to 59%
under LLC contention. The relatively low improvement under
DISK contention is because, during its execution, Hadoop
does not always utilize disk I/O bandwidth; further, not all
CloudSuite request classes require (or contend for) disk access.

Without DIAL, the tail response time can be as high as
20-30ms; with DIAL, the tail response time is almost always
around 4-5ms. Note that DIAL requires some time (at least
two successive intervals of high response time) for interference
detection during which response time continues to be high, as
seen at the start of each contention.

Figures 8 and 9 show our classification metrics for apache1
and apache2, respectively; we only show Tc, wai, sys, and
usr (and not seg ret) for ease of presentation. Note that the
y-axis range in Figure 9 is intentionally smaller to focus on
the rise in the sys metric. For apache1, we see that under NET
contention, Tc is high while the other metrics are unaffected.
For DISK and LLC contentions, sys is high, especially for
LLC; further, usr is also high under LLC contention. Finally,
the wai metric, though noisy, is higher under DISK contention.
By contrast, these metrics are unaffected for the corresponding
time periods under apache2.

Likewise, for apache2, for CPU contention, sys is mod-
erately high but not as high as that under DISK and LLC
contention under apache1. Again, the metrics are unaffected
for the CPU contention period under apache1. This shows
that the relevant metrics on the compromised VM change
under contention, but are unaffected for uncompromised VMs.
Further, the change in metric values under the contention
periods are in agreement with the rules of the decision tree
classifier in Figure 5, even though the classifier was trained
on microbenchmarks and not on these test workloads. This
highlights the efficacy of our classifier.

Note that it is possible for several resources to be si-
multaneously under contention, as in the case of Memcache
(NET, LLC, and DISK); however, it is typically the dominant
resource that has most impact on performance. In the case of
Memcache, the server is hosted on a bg VM and is driven
by mutilate clients (running on different hosts) issuing a high
request rate for a small set of key-value pairs, resulting in NET
being the dominant resource. DIAL correctly classifies this
Memcache bg VM as creating NET contention. For Hadoop,
there is significant demand for disk and memory bandwidth;
however, our classifier suggests DISK contention.

Finally, this experiment also shows that DIAL can han-
dle time-varying contentions exhibited by test workloads (as
evidenced by the time-varying metrics during contention in
Figures 8 and 9), which are common for real workloads.

C. Evaluating DIAL under multiple contentions
DIAL is also capable of dynamically responding to multiple

compromised VMs. This is because our model allows for ar-
bitrary levels of interference on different VMs simultaneously.
The optimization in Section II-C1 provides estimates for LB
weights, via Eq. (3), for all VMs. Note that this is different
from the case of multiple resource contentions on the same
VM, which is beyond the scope of this paper.

Figure 10 shows our experimental results for CloudSuite
where initially apache2 VM is under CPU contention, but
then, after about 5 mins, apache1 (on a different host) also
starts experiencing NET contention, resulting in very high in-
terference for the application. After an additional 5 mins, both
contentions are terminated. We see that DIAL substantially
reduces T90 under interference. This example highlights the
dynamic nature of DIAL. Compared to existing techniques that
employ (static) VM placement to mitigate interference, DIAL
is able to adapt to variations in interference by constantly
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contention, and shows an increase in relevant metrics under those contentions.
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and consequently shows an increase in relevant metrics under CPU contention.
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Fig. 10. DIAL reduces the response time of all request classes by 37% under
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Fig. 11. Performance under LLC contention for fg WikiBench. DIAL reduces
response times by around 23.6% during contention (gray regions).

updating its estimates and re-distributing load accordingly.
For the above experiment, for CPU contention, the DIAL
weights are {0.45, 0.1, 0.45} (apache2 under contention), and
for combined CPU and NET contention, the weights are
{0, 0.27, 0.73} (apache1 under severe NET contention). Note
that if several VMs are under severe contention, we may have
to scale out to maintain acceptable response times.

D. Evaluating DIAL for the WikiBench fg application
Figure 11 shows our results for WikiBench under LLC con-

tention created by the dcopy microbenchmark. Here, we have
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Fig. 12. Performance under LLC contention for AWS setup. DIAL reduces
response times by around 22.3%.
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Fig. 13. usr and sys metrics for the gray region in Figure 12. These metrics
clearly increase during contention.

two application VMs and one of them is under contention.
The figure shows the response time for baseline and DIAL for
all request classes. We create three different contention levels
for this experiment, shown in gray. DIAL reduces response
time by about 23% when compared to the baseline. We also
measure the usr and sys metrics for classification and find
that both increase considerably, by about 62% and 41%,
respectively, under interference; this is in agreement with our
decision tree classifier.

E. Evaluating DIAL in the AWS setup
Figure 12 shows our results for CloudSuite under LLC

contention created by the dcopy microbenchmark in the AWS
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Fig. 14. Comparison of DIAL with ICE under CPU contention. DIAL reduces
T90 for EventDetail by about 48%; reduction for HomePage and TagSearch
classes is about 25%.

setup. Here, we have 10 application VMs and only one of them
is under contention. The figure shows the response time for
baseline and DIAL for all request classes served by all VMs in
the AWS setup. We create several different contention levels
for this experiment. We see that DIAL reduces response time
by about 22% when compared to the baseline. This shows that
even one compromised VM (out of 10) can have a considerable
impact on the overall response time.

Figure 13 shows the usr and sys metrics for the shaded
region in Figure 12 to assess classification. Clearly, both the
usr and sys metrics increase considerably during contention
when compared to the low, flat lines during no contention.
Further, the regions of contention can be easily discerned from
the figure, resulting in good detection accuracy.
F. Comparison with existing user-centric techniques

We now present experimental results comparing DIAL with
existing user-centric interference mitigation strategies. We do
not evaluate cluster management strategies, such as Cloud-
Scope [30], and Tarcil [13], since these strategies cannot be
implemented by the cloud user who does not have a global
view of the infrastructure. Further, users cannot control VM
placement or migration.
Utilization-based strategies. Figure 14 shows our experimen-
tal results for high CPU contention under DIAL and under
ICE [1]. Similar to DIAL, ICE is an interference-aware load
balancing strategy that adjusts the traffic directed towards
compromised VMs. However, instead of using LB weights,
ICE ensures that the CPU utilization for the compromised
VMs stays below a certain threshold. The authors do not
mention this threshold value in the paper, and so we exper-
imentally determine the best threshold value across experi-
ments. Unfortunately, we find that the optimal CPU utilization
threshold varies with the amount and type of interference. For
example, we find that 15% CPU utilization works well for
moderate CPU interference under ICE, but does not work well
for high CPU interference, as illustrated in Figure 14; under
DIAL, with theoretically optimal weights, the response time
is significantly lower, and the observed CPU utilization at the
compromised VM is about 8-10%. The results are similar for
other contentions. While interference-aware thresholds could
help in this case, this would require a relationship between
threshold, type, and amount of interference. Since ICE does
not estimate interference, the threshold value is static.
Queue-length based strategies. Queue-length or load-based
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Fig. 15. Comparison of DIAL with other LB heuristics.

strategies send traffic to the VM that has the lowest load. In
particular, we consider the Least Connections (LC) strategy
that directs the next incoming request to the application VM
that has least number of active connections; Amazon leverages
LC for its elastic load balancer [31] for this purpose. Under
interference, the outstanding requests for the compromised
VM will be higher, resulting in fewer additional requests being
sent to it under LC.

Figure 15 shows the reduction in T90 afforded by DIAL
over LC (and other heuristics that we discuss next) for the
TagSearch request class under CPU and LLC contentions;
results are similar for other classes and for NET and DISK
contention. We see that DIAL lowers response time signif-
icantly, by as much as 70-80%, when compared to LC (red
dashed line). The improvement is greater at higher contentions.
The reason for this improvement is that the compromised
VM does not just have lower capacity, but also requires
(non-linearly) more time to serve each request. The response
time-minimizing weights under DIAL take both these into
consideration, as opposed to LC that only addresses the former.
Weighted load balancing strategies. We now compare
DIAL with other weighted load balancing heuristics, such
as Weighted Round Robin (WRR) and Weighted Least Con-
nections (WLC). For WRR and WLC, we use proportional
interference-aware weights, as discussed in Section II-C. Note
that DIAL is essentially WRR with theoretically optimal
weights ( ~p∗, via Eq. (3)).

Figure 15 shows the reduction in T90 afforded by DIAL
over WRR (blue solid line) and WLC (black dotted line).
We see that DIAL lowers response time considerably when
compared to these heuristics. It is interesting to note that WRR
is typically worse than WLC under CPU contention, but better
than WLC under LLC contention; this observation reaffirms
the fact that the impact of interference depends on the type of
resource under contention.

V. PRIOR WORK IN THE CONTEXT OF DIAL
Interference detection: Recent work has emphasized the need
for user-centric interference detection [1, 2, 32, 33]. IC2 [2]
employs decision trees using VM-level statistics to detect
interference at the cache; this information is then used to tune
the configuration of web servers in co-located environments.
Casale et al. [33] focus on CPU interference and present a user-
centric technique to detect contention by analyzing the CPU
steal metric. CRE [34] makes use of collaborative filtering to
detect interference in web services by monitoring the response
times. While we also monitor response time, unlike CRE, we



go beyond detection and also estimate the amount of inter-
ference. CPI2 [26] employs statistical approaches to analyze
an application’s CPI metric to detect and mitigate processor
interference between threads of different jobs. While CPI2 can
be used in virtual environments, public cloud VMs (e.g., AWS)
do not always expose performance counters. Bubble-Up [35]
presents a similar approach for the memory subsystem.

There have also been many studies on interference detection
from the perspective of the hypervisor (such as ILA [5], TRA-
CON [9], and DejaVu [7]). While effective, such techniques
require hypervisor access for monitoring host-level metrics
(e.g., global CPU usage from Dom0 or hardware performance
counters), which are not always feasible for cloud users.
Interference-aware performance management: ICE [1] pro-
poses interference-aware load balancing by limiting the CPU
utilization of the affected VM below a certain threshold. While
effective, we find, via experiments (see Section IV-F), that
this strategy is not adaptive to different levels of interference.
Tarcil [13] and Quasar [14] profile workload classes and
carefully colocate workloads that do not significantly impact
each others’ performance due to their specific resource require-
ments. By contrast, DIAL does not control colocation (since
VM placement is typically not in the user’s control); instead,
DIAL globally adjusts the LB policy of the fg application to
reroute some of the requests directed at affected VMs.

VI. CONCLUSION

We presented DIAL, a user-centric Dynamic Interference-
Aware Load balancer that can be employed directly by cloud
users to reduce tail response times during interference. DIAL
works by leveraging two important components: (i) An accu-
rate user-centric, response time-monitoring based interference
detector, classifier, and estimator, and (ii) A framework for
deriving theoretically optimal load balancer weights under
interference. Our experimental results using CloudSuite and
WikiBench web applications, under interference from bench-
marks such as Memcache and Hadoop, on OpenStack and
AWS clouds demonstrate the benefits of DIAL.
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