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Abstract—Autoscaling is the practice of automatically adding
or removing resources for an application deployment to meet
performance targets in response to changing workload conditions.
However, existing autoscaling approaches typically require expert
application and system knowledge to minimize resource costs and
performance target violations, thus limiting their applicability.
We present MLscale, an application-agnostic, machine learning
based autoscaler that is composed of: (i) a neural network based
online (black-box) performance modeler, and (ii) a regression
based metrics predictor to estimate post-scaling application and
system metrics. Implementation results for diverse applications
across several traces highlight MLscale’s application-agnostic
behavior and show that MLscale (i) reduces resource costs by
about 50% compared to the optimal static policy, (ii) is within
15% of the cost of the optimal dynamic policy, and (iii) provides
similar cost-performance tradeoffs, without requiring any tuning,
when compared to carefully tuned threshold-based policies.

I. INTRODUCTION

Online services typically experience significant variations

in workload demand [1], [2]. Statically provisioning resources

for the peak demand can minimize performance degradation

during high loads, but can result in unnecessary overprovi-

sioning, to the tune of 40-50% [3], [4], leading to substantial

resource costs and energy expenditure.

Motivation: A promising approach that is widely employed to

mitigate resource costs without compromising on performance

is autoscaling - the ability and knowledge to add/remove

the required amount of resources in response to changes in

demand. Underestimating the resource provisioning can lead

to costly service level agreement (SLA) violations; overesti-

mating the provisioning can result in unsustainable operating

costs and poor resource utilization. While autoscaling can be

employed both in physical clusters (to save on energy costs)

and in virtual clusters (to save on rental costs), successfully

autoscaling the system is challenging. Specifically, it is not

obvious as to how many nodes (machines/VMs) should be

added or removed to meet the required performance.

Objective: Typical approaches to autoscaling rely on a deep

understanding of the application, the underlying infrastructure,

and their dynamics, to accurately scale resources. In the

absence of such information, exhaustive instrumentation and

experimentation is required to carefully study the system [4],

[5]. However, as established by prior work, gaining such an

understanding of a given system is itself a challenging task

worthy of research [6]. Given the diversity of applications

running in the data center and cloud today, can we develop an

application-agnostic autoscaling approach? While predictions

of future load can aid in autoscaling, they still require an

understanding of how load relates to performance in order

to successfully scale the system; further, accurate predictions

are often not available for all applications [4], [7].

Prior approaches: Black-box modeling techniques, such as

those based on machine learning (ML), have emerged as a

promising solution for autoscaling. Typical ML approaches

to autoscaling rely on reinforcement learning, which aims to

learn the best scaling action for a given system state using

historical data and trial-and-error [8], [9], [10], [11]. However,

such approaches incur high overhead due to the requirement

of a large state space for learning [12], [13]. Other approaches

employ linear regression based techniques to capture the

relationship between system state and performance [1], [14].

However, performance is often non-linearly related to resource

usage [5], [15]. We discuss related work in detail in Section II.

Our approach: In this paper, we present MLscale, an

application-agnostic autoscaler based on ML. In particular,

MLscale first employs neural networks to develop an online

black-box model that relates observable monitored metrics

with the performance metric, such as response time. MLscale

then employs regression to estimate the values of the mon-

itored metrics after a hypothetical scaling event, and uses

these estimates to predict performance after scaling. These

predictions enable MLscale to accurately scale the system.

We evaluate the benefits of MLscale using three appli-

cations: (i) IBM’s DayTrader that emulates an online stock

trading system, (ii) a PHP-based load-balanced web server

tier, and (iii) a PHP-MySQL deployment that emulates an

online database service. Despite the difference in behavior

and complexities, MLscale is able to accurately model the

(average and tail) response time for all three applications with

a low modeling error (6-9%). Our evaluation results show that

MLscale reduces cost by around 50% when compared to the

optimal static policy. Compared to the optimal dynamic policy,

MLscale is within 15% of the optimal cost. Furthermore, com-

pared to existing finely-tuned application-agnostic utilization

threshold based systems, MLscale provides comparable cost-

performance tradeoffs without requiring any manual tuning

or trial-and-error approaches for setting model parameters. Fi-

nally, the resource provisioning under MLscale is significantly

more stable than other approaches, thus minimizing overheads

due to provisioning changes.
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Contributions: This paper makes the following contributions:
• We develop a neural network-based online black-box ap-

proach for application-agnostic performance modeling.

• We develop a regression-based metrics estimator to accu-

rately predict the impact of scaling on application metrics.

• We present MLscale, a black-box autoscaler that provides

near-optimal resource usage while minimizing SLA viola-

tions without expert application knowledge or tuning.

Organization: To provide more context for this paper, we first

present related work in Section II. We then present the design

of MLscale in Section III, followed by our experimental setup

and experimental results in Sections IV and V, respectively.

We conclude the paper in Section VI.

II. RELATED WORK

Autoscaling has received significant attention from

academia and industry, especially with the emphasis placed on

sustainable computing and the emergence of cloud computing

and its elastic resources. Most approaches to autoscaling

are application-specific, and rely on expert knowledge of

the application, or on exhaustive experimentations to derive

such knowledge. Armed with this knowledge, reactive and

predictive solutions are proposed for autoscaling; a survey of

such existing solutions can be found in Botran et al. [13].

Such solutions are orthogonal to our application-agnostic

MLscale approach and are not discussed here.

Recent approaches to autoscaling have leveraged ML to

avoid the challenging and tedious performance modeling re-

quired for arbitrary complex applications. AGILE [1] uses

online modeling to estimate the relationship between resource

metrics and performance, thus making it application-agnostic.

However, AGILE leverages polynomial curve fitting (using

polynomials of degree up to 16) by first running controlled

experiments at various resource intensities. AppRM [16] uses

a regression model to approximate the non-linear relationship

between resource allocation and application performance with

a linear model. Our neural network based method is more

generic than polynomial curve fitting or linear approximations

as it can model nonlinearities in the system [17]. Gandhi

et al. [18] employ machine learning to derive black-box

performance models specifically for Hadoop workloads, and

then leverage these models for autoscaling. SCADS [19]

uses ML to offline build performance models for storage

systems that can predict SLA violations. By contrast, MLscale

is designed to be application-agnostic (neural network-based

online modeling). Gmach et al. [20] use fuzzy logic to derive

autoscaling rules based on resource usage. While fuzzy logic is

different from ML, it does provide similar black-box modeling

ability. However, the initial set of rules must be provided,

preferably by an expert, for fuzzy logic to work well.

A popular ML approach to autoscaling is reinforcement

learning (RL). This approach learns the best action for a given

system state (such as request rate or load specification) based

on past experience and via trial-and-error. Dutreilh et al. [8]

use RL to learn the scaling actions that minimize the sum of

number of servers and violations. Bahati et al. [9] also employ

RL to adapt the action space of threshold-based autoscaling.

VCONF [10] leverages RL to automatically configure various

system parameter values, including the number of resources.

One of the main drawbacks of RL is the time taken by

the system to learn “good” actions. During this learning

time, performance can be quite poor. To overcome this issue,

Tesauro et al. [12] use queueing theory to initially manage the

system, and then use RL, once enough training has been done,

to control the system. While useful, RL is often not scalable

given the large state space (exponential in the number of

variables) that it has to maintain. In fact, RL is often integrated

with neural networks to reduce its state space [11].

ML has also been used to tune the parameters of application-

specific models. Iqbal et al. [14] employ polynomial regression

to model the number of servers in a tier as a function of the

number of static and dynamic requests received by the RUBiS

web application. Horvath et al. [15] use regression to model the

relationship between response time and (only) CPU utilization,

and server power and CPU utilization. These models are then

used for energy-efficient application scaling. Lim et al. [21]

employ multi-variate regression to model the impact of rebal-

ancing data for elastic storage. Gandhi et al. [5], [22] employ

Kalman filters to estimate parameters of performance models

that are not easily observable. However, the authors start with a

generic queueing-theoretic model whose parameters are then

derived online. By contrast, MLscale does not assume any

prior application-specific knowledge or performance model.

III. MLSCALE

We now present our approach, MLscale. The two im-

portant components of MLscale are: (i) an online neural

network-based performance modeler (Section III-A), and (ii) a

regression-based post-scaling metrics predictor (Section III-B).

Together, the two components allow MLscale to accurately and

efficiently autoscale the system (Section III-C).

A. Black-box Neural Network Performance Modeling

Our goal here is to develop an online performance model

that can accurately estimate performance, mean or tail re-

sponse time in our case, as a function of observable metrics,

such as request rate and resource utilizations. Importantly, our

model should not rely on any expert application knowledge.

We employ ML for our performance modeling objective.

In particular, we leverage neural networks (more specifically,

a multi-layer feed-forward network) to model response time.

Neural networks take a set of inputs, and then learn how to

best combine them, using adaptive weights, to estimate the

output that is close to the observed metric of interest (mean

or tail response time). Neural networks offer a number of

advantages, including requiring less formal statistical training

and the ability to implicitly detect complex nonlinear relation-

ships between dependent and independent variables [23]. A

disadvantage is that they are prone to over-fitting, but this can

be solved by using more training data [24]. For more details,

we refer the readers to Haykin [17].
Inputs to our neural network model consist of request rate

and average (across all nodes in a tier) system usage statistics



such as CPU usage, number of context switches, number of

interrupts, and network and disk I/O statistics; these metrics

can be easily obtained online (see Section IV-D). We use

average statistics for our load-balanced homogeneous nodes,

as opposed to per-node statistics, to reduce our state space. The

neural network leverages these inputs and outputs estimates of

response time; this gives us an accurate model for performance

using training data collected online. We use a single hidden

layer in our network since the Universal Approximation The-

orem is well known for feed-forward networks with sigmoid

functions [17]. Due to lack of space, we are not including a

diagram of our network. Note that the network can be easily

modified to add additional output variables such as estimates

of tail response time or other metrics such as resource usage,

power consumption, etc. The size of the hidden layer will have

to be adjusted accordingly.

Training our neural network model, given the input data,

takes a few seconds. The test error for modeling the mean

response time of our three applications using neural networks

is about 6%; the test error for modeling the tail (95%ile)

response time is about 8.2%. It is important that the training

data cover a moderate range of request rates and several

scaling actions. These scaling actions could be naive, for

example, based on changes in request rate. In general, the

larger and richer the training data set, the lower will be

the modeling error. The amount of training data required for

obtaining the above-mentioned error is a few hours worth of

application run time.

We also compare neural network with other ML techniques

that can be used for performance modeling. Specifically, we

train models using non-parametric techniques such as Support

Vector Regression (SVR), Kernel Regression (KR), and K-

Nearest Neighbors (KNN), and also Linear Regression (LR),

which is a parametric technique. Table I shows the training

times, and training and test errors, across all applications, for

mean response time modeling under these techniques. We use

a 70-30% training and test split over the observations (see

Section IV for details on our experimental setup). While all

techniques, except LR, have low modeling error, SVR and KR

need substantial training time as both require cross-validation

to set model parameters. KNN can be trained quickly, but

has very high overhead as it keeps the entire training data

in memory. Neural networks has low error, moderately low

training time, and low overhead. We thus employ neural

networks for MLscale’s performance modeling component.

Note that the other ML techniques we consider can still be

useful in specific scenarios. For example, SVR and KR can

be leveraged in cases where longer training time is acceptable,

and KNN can be leveraged in cases where there is adequate

capacity to hold the entire training data in memory.

B. Regression-based Metrics Prediction

The next logical step is to determine how the above per-

formance model can be used to decide the resource scaling.

Typically, the model is queried to determine the number of

resources needed to achieve a response time below the SLA

Technique Training Time Training Error Test Error

LR 2.5ms 9.2% 9.3%
SVR 1294s 2.1% 6.2%
KR 8141s 1.8% 8.2%

KNN-uniform 5 ms 5.0% 6.4%
KNN-distance 5 ms 0% 6.2%

Neural Network 7.5 s 5.9% 6.0%

TABLE I
COMPARISON OF ML TECHNIQUES FOR PERFORMANCE MODELING.

target. However, there is a subtle issue here. The model esti-

mates response time based on current inputs (request rate and

resource usage). To predict the response time after scaling, we

need estimates of the post-scaling metrics. Unfortunately, the

metrics are dependent on the resource scaling. For example,

average CPU usage will likely drop after adding a new node,

and thus we cannot use current, pre-scaling, estimates of CPU

usage for predicting post-scaling response time.

To predict new estimates of input metrics after the proposed

scaling action, we again use ML. In particular, we employ

multiple linear regression to estimate the post-scaling metrics,

m′, as a function of the current metric value, m, current

number of nodes employed in the target tier, w, and proposed

number of additional nodes, k; note that k can take negative

values to indicate scale-in. Mathematically, we have:

m′ = c0 + c1 ·m · w/(w + k) + c2 ·m · k/(w + k), (1)

where c0, c1, and c2 are regression coefficients that are derived

via training. If we naively assume that the metrics scale per-

fectly with the number of nodes, that is, m′ = m ·w/(w+k),
then we have c0 = 0, c1 = 1, and c2 = 0. This “naive metric

scaling” is often assumed in existing work for simple metrics

such as request rate and CPU utilization [2], [5], [15], and

motivates the structure of the specific terms used in Eq. (1).

However, this naive scaling relationship is not very accurate in

practice as CPU utilization and other metrics often depend on

background activities as well. Further, even an idle node will

have non-zero context switches and interrupts. Our regression

coefficients account for such discrepancies.

We use a subset of the training data employed for neu-

ral network modeling; specifically, we consider data points

immediately before and after a scaling action. Based on

training, we find that c1 ranges from 0.8 − 1 and c2 ranges

from 0.4 − 1.1 for different metrics. c0 varies much more

widely depending on the metric, ranging from near-zero for

CPU utilization to the thousands for interrupts and context

switches. Our test error for regression across all applications

is a low 9% (across all metrics). The non-zero values for c0
and c2 validate the inaccuracy of naive metric scaling. We

further illustrate the need for this regression-based metrics

predictor via experiments in Section V-E. Note that while we

can use other ML techniques, such as neural networks, for

this metrics prediction component, we find that the simple

(low-overhead) linear regression technique, given by Eq. (1),

provides acceptable prediction accuracy. However, this was not

the case under performance modeling (see LR in Table I).
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(a) T2 trace [25]
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(b) T4 trace [25]
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(c) T5 trace [25]
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(d) Clarknet trace [26]
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(e) UCB trace [26]
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(f) SAP trace [27]

Fig. 1. Traces used in our experiments. Y-axis represents normalized request rate. X-axis represents normalized trace time.

C. Putting it all together - MLscale

MLscale works by leveraging the neural network-based

online performance modeler and regression-based metrics pre-

dictor. In particular, we periodically monitor request rate and

resource usage metrics (obtained via collectl [28]), and use

these monitored metrics as input to the performance model

to estimate response time. If both the observed and estimated

response time exceed the SLA target, we invoke autoscaling.

Note that we also rely on our performance model’s estimate

of response time to avoid responding to noisy measurements

of application response time. In practice, we invoke scaling

conservatively before the SLA target is violated; we scale-

out when response time is within 10% of the SLA target.

This is similar to the approach used by existing autoscaling

techniques [1], [5]. We initiate scale-in when the response time

drops below 60% of the SLA target. These thresholds can be

adapted as needed depending on the user’s cost-performance

tradeoff preferences. Our experimental results in Section V

show that MLscale provides a balanced cost-performance

tradeoff between resource usage and SLA violations.

To execute autoscaling, we first leverage the metrics pre-

dictor to predict post-scaling metrics for a proposed scaling

action, and use these post-scaling metrics as input to the

performance model to predict the response time after the

proposed scaling. This allows us to determine the minimum

scaling (k in Eq. (1)) required to maintain response times

below the SLA target by evaluating scaling options around the

current provisioning (w in Eq. (1)). Note that k can be greater

than 1, thus allowing for arbitrary provisioning changes. We

show in Section V that MLscale often adds/removes multiple

nodes simultaneously in response to large variations in load.

IV. EXPERIMENTAL SETUP

MLscale can be employed in physical clusters or virtual

clusters to save on operating costs and improve resource

utilization. Our evaluation focuses on virtual clusters. We use

an OpenStack-based private cloud (hosted on Dell C6100

servers with 12 cores and 48GB each, connected via 1Gb

links) and an AWS-based public cloud (m4.large and c4.large

instances [29]) for our experiments. We create VMs on these

clouds to host our applications. Unless otherwise specified, we

report results and details for the OpenStack setup.

A. Applications

PHP-based web application. We set up a 10-VM (4GB RAM,

2vCPU) tier of Apache-PHP web servers that each host a

computationally-intensive microbenchmark. These VMs are

behind an Apache load balancer [30], hosted on a different

VM, that distributes incoming requests among the VMs in a

round robin manner, and also allows enabling/disabling the

web servers. Note that, because of autoscaling, the number of

active web VMs will vary dynamically. We use httperf [31],

on another VM, as our load generator with exponential inter-

arrival times.

DayTrader. DayTrader [32] is an open source benchmark

application emulating an online stock trading system. Day-

Trader is an end-to-end Java Enterprise Edition (J2EE) web

application composed of several Java classes, Java Servlets,

Web Services and Enterprise Java Beans, making it an ideal

benchmark for evaluating the scalability and performance of

a J2EE application server like IBM WebSphere Application

Server (WAS). The TradeDatabase is hosted on DB2.

Our DayTrader deployment consists of 7 VMs. Four of these

VMs (4GB RAM, 2vCPU each) are application tier VMs run-

ning IBM WAS and have the DayTrader application deployed

on them. The backend database VM (18GB RAM, 4vCPU)

runs DB2 using a ramdisk [33] for improved performance.

Another VM serves as a front-end load-balancer running IBM

HTTPServer (similar to Apache). The last VM acts as the

client and simulates requests to the DayTrader application

through iwlengine. The client supports several request classes,

such as home, register, buy, sell, etc. Several of the request

classes execute on both the WAS tier and the DB, and have

dependencies between them.

PHP-MySQL application. We set up 3 database VMs (4GB

RAM, 4 vCPU each), hosting exact replicas (for read-only)

of 5 million records of stack exchange posts data [34]. An

httperf VM (8GB RAM, 4 vCPU) generates requests that are

directed to the PHP application tier VMs (4GB RAM, 2vCPU

each) via an Apache load balancer (8GB RAM, 4 vCPU).

The application tier VMs generate a query for each received

request; the query consists of read requests for 10 randomly

selected records. Queries are sent to an HAproxy [35] (TCP)

load balancer VM (8GB RAM, 4 vCPU), which selects one

of 3 replicated database VMs to serve the 10 associated read

requests. Load balancers use the (default) round robin policy.

B. Traces

We use various request traces from NLANR [25], ITA [26],

and enterprise applications [27] for driving our application

load. The specific traces we use for evaluation are shown in

Figure 1. We only show normalized request rate and trace

length values as these are modified per the system capabilities.



C. Metrics

We focus on cost-performance tradeoffs. To this end, we use

the percentage of response time violations over the monitoring

intervals, V, as our performance metric. The response time

SLA for the PHP web application is set to 120ms, that for

DayTrader is set to 10ms, and that for PHP-MySQL is set to

60ms. For DayTrader, we only focus on the “quotes” request

class which makes up the majority of generated requests and

accesses the WAS and DB nodes.

For cost, we consider the time-averaged number of nodes

(VMs) employed over the entire experiment length, N, as our

metric. N can be used as a proxy for the dollar cost of renting

resources, or as a proxy for power usage in physical clusters.

D. MLscale implementation

MLscale is implemented as a simple controller in python

using a few hundred lines of code, and is hosted on the

application’s load balancer VM. MLscale leverages the ffnet

library for implementing neural networks. The scaling action

is executed by issuing directives to OpenStack or AWS and

the application (specifically, the load balancer for each appli-

cation) to add/remove the VMs. For monitoring, we use a 10s

interval to provide responsive autoscaling while avoiding hasty

decision making. All VMs monitor resource statistics using the

collectl [28] utility. Load balancers monitor the request rate

and response time. MLscale collects all statistics periodically.

V. EVALUATION RESULTS

We now present our evaluation results. We first discuss

our evaluation methodology in Section V-A. We then present

our results for the PHP-based web application (Section V-B),

DayTrader (Section V-C), and the PHP-MySQL application

(Section V-D). We end with additional results (Sections V-E)

that highlight MLscale’s unique advantages.

A. Experimental Methodology

To evaluate MLscale, we consider the percentage of viola-

tions over the entire trace, V , and the time-averaged number

of VMs employed, N . Unless otherwise specified, violations

refer to mean response time SLA violations. For each trace,

we compare MLscale with the following scaling policies:

Opt-Static. This is an unrealistic policy that knows the exact

request rate ahead of time and statically provisions for the peak

request rate over the entire trace, thus resulting in 0 violations.

As expected, Opt-Static has high resource usage.

Opt-Dynamic. This is the ideal dynamic autoscaling policy

that also knows the request rate ahead of time and dynamically

provisions the system to incur 0 violations. We do not imple-

ment Opt-Dynamic, but instead model its resource usage by

benchmarking the application to derive the peak throughput of

a single VM, and use this information to estimate provisioning

at each point in time, allowing for fractional resources, to

obtain a lower bound. Similar approaches have been used in

prior work [7] to emulate the optimal policy for comparison.

CPUscale. This policy works by setting upper and lower

thresholds for scaling based only on monitored (10s intervals)

CPU utilization. Specifically, if the average monitored CPU

utilization of the VMs, in the last 3 monitoring intervals,

exceeds the upper threshold, a scale-out in initiated. Likewise,

when the average falls below the lower threshold, a scale-

in is initiated. CPUscale is representative of existing rule-

based policies offered by cloud services such as AWS [36]

and OpenStack [37]. In practice, we implement CPUscale and

empirically find the best upper/lower thresholds for each trace.

B. Results for PHP-based Web Application

Figure 2 shows the performance of our PHP web application

under MLscale for T2 and T5 traces. The solid red line (y-

axis on the right) shows the observed request rate and the blue

dotted line (y-axis on the left) shows the observed response

time. The green horizontal line denotes the mean response

time target (120ms).

We see that MLscale leads to very few violations for

both traces. This is because of the timely scaling actions,

denoted by the black up and down triangles, representing

scale-out and scale-in, respectively, in the figures; multiple co-

incident triangles represent addition/removal of multiple VMs

simultaneously. Observe that the scaling actions are typically

correlated with a sharp change in request rate. However, this

is not always the case. For example, the variations in request

rate for T2 between the 1hr and 2hr marks, and those for T5

between the 0.5hr and 1hr marks, do not necessitate scaling

and lead to only a couple of violations. Also observe the

relatively stable provisioning under MLscale which does not

needlessly result in scaling actions. For example, the variations

in load between the 2.5hr and 4hr marks for T5 result in only

1 provisioning change and no violations.

Compared to Opt-Static, MLscale lowers the resource cost

by about 60% for T2 and about 46% for T5. This is expected

as MLscale is dynamic in nature. Compared to Opt-Dynamic,

MLscale is within 15% of the ideal resource cost. Recall that

Opt-Dynamic knows the exact request rate ahead of time.

Compared to the best CPUscale policy, MLscale provides

superior cost-performance tradeoffs. For T2, the best CPUscale

policy (with upper threshold of 55% and lower threshold of

35%) results in 1.8% violations and 2.2 resource cost, both

marginally higher than MLscale; results are similar under T5.

Full results for all traces and all policies are provided in

Table II. In the table, we omit V values for Opt-Static and

Opt-Dynamic as these are 0. Instead, we report percentage

reduction in N of MLscale over Opt-Static, ∆N Opt-Static,

and percentage reduction in N afforded by Opt-Dynamic over

MLscale, ∆N Opt-Dynamic. We use a cluster size of 5 VMs

for the first three traces and 10 VMs for the last three traces.

Of course, the resulting value of N will depend on the scaling

policy and the trace; the cluster size represents the upper bound

of N . We see that MLscale typically incurs less than 5%

violations and lowers resource costs by at least 40% when

compared to Opt-Static. Further, in most cases, MLscale’s

resource usage is within 15% of the usage of Opt-Dynamic.

MLscale vs. CPUscale: The results in Table II for T2 and

T5 traces show that MLscale is superior to CPUscale in terms

of both performance violations and resource cost. For other
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(a) T2 trace under MLscale. V=0.9%, N=2.0.
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(b) T5 trace under MLscale. V=1.0%, N=2.7.

Fig. 2. Performance of (a) T2 and (b) T5 under MLscale for the PHP web application. The up and down triangles indicate scale-out and scale-in, respectively.

MLscale ∆N Opt-

Static

∆N Opt-

Dynamic

Best CPUscale

V N V N

T2 0.9% 2.0 59.8% 14.4% 1.8% 2.2
T4 2.1% 2.4 51.6% 14.9% 2.0% 2.8
T5 1.0% 2.7 46.0% 13.3% 1.8% 3.1

Clarknet 5.9% 5.0 49.7% 20.5% 3.4% 5.2
UCB 4.3% 5.8 42.3% 15.1% 3.5% 6.2
SAP 4.9% 4.7 53.1% 12.6% 3.6% 5.7

TABLE II
COMPARISON OF POLICIES FOR ALL TRACES UNDER PHP APPLICATION.

traces, the results are comparable. However, we emphasize

that while the best CPUscale policy provides qualitatively

similar results to MLscale, it requires exhaustive trial-and-

error experiments on each trace to choose the best upper/lower

thresholds. For example, the best CPUscale policy provides

lower violations at the expense of slightly higher resource

costs compared to MLscale for Clarknet and UCB traces.

However, converging on the best CPUscale policy required ex-

perimentation with 7 different pairs of upper/lower thresholds,

for each of Clarknet and UCB. Further, the wide variance in

performance for different threshold choices highlights the need

for this experimentation – for Clarknet, N varied from 5.2 (for

thresholds of 35%-70%) to 8.9 (for thresholds of 35%-55%,

which were best for T2); similar variations were observed for

V . Worse, the best choice is often trace-dependent, making

it difficult to “learn” the best thresholds. Similar conclusions

about the limitations of threshold-based policies were also

made by prior work [1], [5], [8]. In summary, MLscale

provides similar tradeoffs as the best CPUscale policy without

requiring exhaustive experimentation on the exact workload

and trace. While MLscale requires some training, this is a

one-time effort that does not have to be repeated for each

trace.

Provisioning stability: It is important to note the stability

of the VM provisioning under MLscale. For the T2 and T5

traces shown in Figure 2, MLscale performs 14 and 22 scaling

actions, respectively (some actions result in multiple VMs

being added/removed). By contrast, the best CPUscale policy

performs 88 and 64 scaling actions. This unstable provisioning

behavior of the CPUscale policy is illustrated in Figure 3 for

the T2 trace. The provisioning under Opt-Dynamic is even

more unstable – 151 and 263 scaling actions for T2 and T5,

respectively. This instability stems from the need to react to
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Fig. 3. Performance of T2 under the best CPUscale policy for the PHP
web application. V=1.8%, N=2.2. The numerous scaling actions triggered by
CPUscale illustrate its unstable resource provisioning.

the current system state without understanding the post-scaling

implications. For example, the scaling actions in Figure 3

typically occur in pairs of scale-out followed quickly by a

scale-in. This suggests an oscillatory behavior where the CPU

utilization upper threshold is violated, resulting in a scale-

out, which then violates the lower threshold, resulting in a

scale-in. By contrast, MLscale’s metrics predictor can estimate

the system state after the proposed scaling action, and can

thus reduce some of this instability. A stable provisioning is

preferred to minimize any overhead, such as the boot up time

or wear-and-tear associated with adding/removing nodes [7].

95%ile response time targets: MLscale can be easily ex-

tended to model tail response times, such as 95%ile response

times. We evaluate MLscale for the Clarknet and UCB traces

under a 95%ile response time target of 120ms. We use the

AWS public cloud setup for these experiments. MLscale

provides 11.2% lower violations than the best CPUscale

(thresholds of 10%-60%) for Clarknet while consuming the

same amount of resources. For UCB, MLscale provides 26.7%

lower violations than the best CPUscale (thresholds of 15%-

60% this time), at the expense of 1.7% more resources.

C. Results for DayTrader

DayTrader is a considerably more complex application

than our PHP web application. It is multi-tiered, and has

several request classes. In this evaluation, we only focus on

autoscaling the application tier as scaling the stateful database

tier which is subject to reads and writes is a much harder
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Fig. 4. SAP trace under MLscale for DayTrader application. V=0.8%, N=2.1.

MLscale
∆N Opt-Static ∆N Opt-Dynamic

V N

T2 0.5% 1.9 53.0% 1.1%
T4 1.5% 1.9 51.8% 0.0%
T5 1.3% 3.1 22.5% 0.7%

Clarknet 0.9% 2.4 40% 0.0%
UCB 3.0% 1.5 63.5% -0.7%
SAP 0.8% 2.1 48.0% 1.4%

TABLE III
COMPARISON OF MLSCALE AND OPT POLICIES FOR ALL TRACES UNDER

THE DAYTRADER APPLICATION.

problem [38] that is beyond the scope of this paper. We do,

however, autoscale a read-only database tier in Section V-D.

Figure 4 shows the performance of DayTrader under

MLscale for the SAP trace. We see that the percentage of

SLA violations, V , is very low under MLscale. Also note the

correlation between scaling actions and change in request rate.

While this might suggest that request rate-based autoscaling

strategies should work well for such traces, prior work [7] has

shown that this is not the case. This is because the number

of VMs in the tier affects performance due to communi-

cation overheads, thus lowering a VM’s efficiency. Further,

DayTrader employs a closed-loop load generator with a fixed

number of clients; under this load generation model, request

rate actually decreases as performance degrades, as each client

request takes longer to complete, and the next request for each

client is only generated once the previous once completes.

Thus, request rate-based autoscaling would incorrectly scale-

in VMs when performance degrades. MLscale does not rely

only on request rate or CPU utilization, and can thus avoid in-

correctly reacting to closed-loop request generation. Note that

the provisioning under MLscale is also stable for DayTrader.

Table III shows the results of MLscale for all traces, and

also compares its cost with the optimal approaches. We see that

violations are very low for DayTrader under MLscale, often

less than 2%. In terms of cost, MLscale again lowers resource

cost by about 50% when compared to Opt-Static. Interestingly,

for DayTrader, MLscale is typically within 1% of the cost

of Opt-Dynamic. In fact, MLscale consumes fewer resources

than Opt-Dynamic for the UCB trace, but at the expense of

3% violations. This highlights MLscale’s provisioning efficacy

and, combined with the low violations, shows that MLscale’s

autoscaling is near-optimal for DayTrader.

0  0.5 1  1.5

Time (hours) 

40

80

120

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
) 

0

50

100

150

R
e
q
u
e
s
t 

R
a
te

 (
re

q
u
e
s
ts

/s
e
c
) 

Avg. Response Time SLA Target Request Rate

Fig. 5. T5 trace under MLscale for PHP-MySQL application. V=1.7%, N=2.3.

D. Results for PHP-MySQL application

We now present results for the PHP-MySQL application

where we autoscale the database tier. Scaling the database

tier is considerably more complex because of data consis-

tency [38]; we thus consider a read-only database hosted on

a VM, and add/remove exact replicas of the database VM to

scale throughput according to workload demand.

Figure 5 shows the performance of our PHP-MySQL appli-

cation under MLscale for the T5 trace. We see that MLscale

results in only a few violations (1.7%) despite the significant

demand variations. In the first hour of the trace, MLscale

autoscales 15 times, and does result in violations; this is likely

because of the very erratic load variations as shown in the

request rate plot (red solid line) in Figure 5. However, in the

second hour, MLscale autoscales only 2 times, though there

are still considerable load variations. Note that there are very

few violations in the second hour. This shows that MLscale

correctly chooses to not autoscale the system too often in

the second hour. This is because of the metrics predictor

component of MLscale that can predict post-scaling response

time, and can thus avoid unnecessary provisioning changes.

Compared to Opt-Static, MLscale lowers resource costs by

about 24%. Further, MLscale is within 25% of the cost of Opt-

Dynamic. While there is room for improvement in this case

compared to Opt-Dynamic, MLscale chooses to be conserva-

tive in terms of resource usage since the database performance

degrades considerably as CPU utilization increases.

Results are similar for other traces under MLscale: V =
0.1%, N = 2.0 for T4; V = 1.3%, N = 1.9 for T2; and

V = 2.1%, N = 1.8 for UCB.

E. Importance of Metrics Predictor

The metrics predictor component of MLscale is critical

for the quality of autoscaling decisions. Prior work typically

implicitly assumes naive metric scaling (see Section III-B),

which says that metrics, such as per-VM CPU utilization

and network activity, scale exactly with the number of VMs

currently active. This incorrect assumption can negatively im-

pact resource costs and performance. By contrast, our metrics

predictor considers a more complex relationship, as given by

Eq. (1), which improves cost and performance. Figure 6 shows

the performance for DayTrader under the T5 trace with and

without the regression based metrics predictor; we focus on the

last 40 minutes in the trace and show the observed request rate
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Fig. 6. Performance for T5 trace with and without the regression-based
metrics predictor under DayTrader. Resource cost increases by 16% and
violations increase by 23% without the regression-based metrics predictor.

and the number of VMs employed under each technique. Note

that the “no regression” refers to naive metric scaling. We see

that the VM provisioning under MLscale (blue dashed line) is

responsive to changes in the request rate (orange solid line).

By contrast, without regression (black dash-dot line), the VM

provisioning is not as responsive to changes in the workload.

As a result, the resource usage, N , under no regression is 3.6

compared to 3.1 under MLscale, an increase of 16%. Similarly,

the violations, V , under no regression is 1.6% compared to

1.3% under MLscale, an increase of 23%.

VI. CONCLUSION

We present MLscale, an application-agnostic autoscaler that

requires minimal application knowledge and manual tuning.

MLscale employs neural networks to online build the appli-

cation performance model, and then leverages multiple linear

regression to predict the post-scaling state of the system. The

metrics predictor is an important component that helps exploit

black-box modeling methodologies by predicting the impact

of an action on the system state; the stable provisioning under

MLscale highlights this advantage.

As part of future work, we will investigate the use of

MLscale to autoscale in response to performance interference

in colocated VMs. We can include relevant metrics, such as

cycles-per-instruction (CPI), as inputs to our neural network

model to detect interference. If we oversubscribe CPU in

our OpenStack setup, we find that including CPI improves

modeling accuracy by around 6.7%. We will also explore

modifications to MLscale to make it adaptive to long-term

changes in the workload. We believe that our modeling and

metrics prediction components can be retrained online in

response to an increase in the modeling error, although at the

expense of some retraining time.
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