
Lessons Learnt from Software Tuning of a
Memcached-Backed, Multi-Tier, Web Cloud Application

Muhammad Wajahat, Salman Masood, Abhinav Sau, Anshul Gandhi
Stony Brook University

{mwajahat, smasood, asau, anshul}@cs.stonybrook.edu

Abstract—Cloud computing has largely replaced dedicated and
physical computing systems by providing critical features such
as elasticity and on-demand access to resources. However,
despite its many benefits, the cloud does have its limitations,
such as limited or no control over the hardware and limited
customization options. Users who deploy applications on the
cloud only have control over software tuning and optimizations
since the infrastructure is managed by the provider.
In this paper, we analyze cloud-deployed Web applications
that are multi-tiered and employ Memcached as the object
caching layer. Memcached is a high performance memory
caching system and, if there are no other bottlenecks in the
system, the overall application performance should be dictated
by Memcached. However, we show that other components of
the system such as web servers, load balancers, and some
underlying system configurations, severely impact applica-
tion performance. We analyze these components and provide
guidelines on their implementation and parameter tuning to
minimize resource waste in the cloud.

1. Introduction
In the past decade, cloud computing has replaced conven-
tional dedicated computing systems by providing on demand
access to economical resources and services, including Vir-
tual Machines (VMs). This has allowed companies, espe-
cially online service providers, to avoid upfront investment
in infrastructure and instead focus on their applications.
Despite its many benefits, however, cloud computing does
have its limitations. Tenants have limited or no control
over the underlying hardware and its customization options,
which are managed by the cloud service provider. Conse-
quently, users who deploy applications on the cloud have to
rely on software tuning options to maximize performance.
Further, since VM placement is handled by the provider,
users have to carefully deploy multi-tier applications to
avoid bottlenecks at individual tiers that might impact the
entire service chain. Without proper software tuning and
bottleneck mitigation, tenants have to resort to capacity
overprovisioning to meet their performance needs; such
overprovisioning lowers resource usage efficiency.
Consider the popular object caching service, Mem-
cached [1], which is widely used by online service providers
(e.g., Facebook [2], [3] and Wikipedia [4]) to cache the
results of database queries or API calls in memory to

increase application throughput. Prior work on improving
the throughput of Memcached has focused on leveraging
hardware solutions (e.g., RDMA [5], GPUs [6], etc.), which
are infeasible for cloud users. Further, Memcached is usually
deployed as part of a service chain, such as a multi-tiered
web application. We know that “a chain is only as strong as
the weakest link”; while there has been a lot of research on
optimizing Memcached performance (see Section 2.3), it is
also critical to ensure that other links in the chain, such as
web server-Memcached and load balancer-web server, are
not a bottleneck.
The primary goal of this work is to investigate techniques
for optimal design and configuration of a Memcached-
backed multi-tiered web application deployed in the cloud.
Specifically, we ask “How can we maximize the throughput
of a Memcached-backed cloud application?”
To address this question, we explore software tuning and
programming models that can be easily leveraged by cloud
users. We first set up a customizable multi-tier web appli-
cation complete with a load generator, load balancer, web
servers, Memcached servers, and a database (Section 3).
Next, we study the application performance and investigate
software tuning and communication models at relevant com-
ponents to mitigate bottlenecks and maximize throughput.
We use extensive experimental evaluation to find the best
possible configuration of the components. We also switch
from synchronous to asynchronous components one by one
from upstream to downstream tiers and evaluate perfor-
mance improvements. To emulate real world scenarios as
closely as possible, we use the value size and popularity
distributions as reported by Facebook [3]. We evaluate
Apache (synchronous) vs Nginx (asynchronous) for load
balancer and web server tiers, and optimize their respective
configuration options.
Our experiments reveal that, with default configuration val-
ues, the other components in a Memcached service chain
can significantly limit end-to-end throughput. Even after
optimization, our peak application throughput is only about
half of what the Memcached can achieve by itself, without
other tiers in the service chain. Next, to optimize the service
chain, we find that it is typically enough to consider a
couple of tuning parameters at each component. Finally,
when properly optimized, asynchronous components are not
always superior to synchronous components; the choice



Load Balancer
Arriving 

jobs

Web servers
Memcached servers

Database

Figure 1. Illustration of a multi-tier Memcached-backed application.

between them is non-trivial and depends on the number of
servers in each tier of the chain.
The rest of the paper is organized as follows. We discuss
relevant background and prior work on Memcached and
multi-tier Memcached applications in Section 2. We then
describe our multi-tier Memcached-backed cloud web ap-
plication in Section 3. Experimental results detailing our
tuning and implementation efforts are described in Section 4.
Finally, we conclude in Section 5.

2. Background and Prior Work
2.1. Memcached overview
Memcached [1] is a distributed in-memory caching system
that efficiently scales to large memory capacities via mul-
tiple nodes due to its simple design. Memcached is a key-
value (KV) store that typically sits in front of the database
tier. Clients request data from the Memcached tier via a
client-side library, such as libMemcached. Typical library
functions include KV read (get) and write (set). The li-
brary hashes the requested key and determines which Mem-
cached node is responsible for caching the associated KV
pair. In case of a read request, the KV pair is fetched from
the faster (memory access) Memcached node, if cached.
Else, the client library can decide to request the KV pair
from the slower (disk access) database, and optionally insert
the retrieved pair into Memcached. Write requests proceed
similarly; the client can choose to additionally write the KV
pair to the database. Note that the client library, and not
Memcached, determines which node to contact.
A single Memcached node can provide substantial through-
put. In our experimental setup, a Memcached node deployed
on a modestly-sized VM in OpenStack can provide in excess
of a million operations/second (see Section 3).

2.2. Memcached-backed applications
In production systems, including Facebook [2], [3], Mem-
cached is typically deployed as part of a multi-tier system
where it sits in front of the data tier. Figure 1 shows an
example multi-tier Memcached-backed application consist-
ing of a load balancer (LB), a tier of web servers, a tier
of Memcached servers, and a database. The LB distributes
incoming requests to the web servers. The web servers
typically parse the incoming request and determine the data
needed, such as customer profiles or account information, to
satisfy the request; this data is then fetched from the back-
end data tier servers. Traditionally, the back-end servers
store persistent data on (slow) hard drives/disks, usually in
the form of databases. Memcached are servers are employed
to reduce data access latency and increase throughput by

caching popular data in memory (DRAM). In a cloud-
deployed setting, each server would be hosted on a VM.
Note that the database is connected to the web servers and
not the Memcached; this is because data is requested via
the client library at the web servers.
In this distributed setting, the end-to-end throughput of the
application could be limited by the throughput at each of
the components, and not just Memcached. For example, if
the LB cannot sustain high request rates, then it becomes
the bottleneck. Since Memcached can typically provide high
throughput, it is important to carefully eliminate perfor-
mance bottlenecks at other components to realize high end-
to-end application throughput. If not, application owners
may resort to expensive overprovisioning of VMs at non-
Memcached tiers to increase throughput, leading to lower
resource and energy efficiency at the data center level.

2.3. Prior work on Memcached optimization
There is much prior work on improving the performance
of a single Memcached node. Most of the improvements
have been realized by mitigating the network bottlenecks
or addressing the shared lock in the caching system, e.g.,
CPHash [7] (concurrent hash table and message passing) and
MemC3 [8] (smarter hashing and locking mechanisms).
Recently, efforts have been made to analyze and optimize the
end-to-end performance of Memcached-backed application.
Atikoglu et al. [3] analyze Facebook’s Memcached deploy-
ment; their analysis reveals that Facebook’s Memcached
workload is read-heavy (30:1 read/write ratio) and has a
moderate hit-rate of 81.4% despite power-law distributed
request popularity. Hart et al. [9] study the impact of Mem-
cached on overall site performance of Facebook by creating
a Memcached performance model; the model is then used to
predict throughput on sequential and parallel architectures
with high accuracy. Li et al. [10] analyze the underlying
causes of high tail latency in unoptimized server systems
running Nginx and Memcached. They first find a theoretical
baseline for performance using queueing theoretic models,
and then upon finding the actual latency distributions to
be much higher than the theoretical baseline, systematically
identify and quantify the problem sources.
Several of the above efforts require hardware changes that
are infeasible for cloud tenants. As such, it becomes critical
to explore software techniques to improve end-to-end per-
formance by focusing on all components of the Memcached-
backed application.

3. Experimental Setup
Our experimental setup for a multi-tier Memcached-
backed application closely resembles that in Figure 1.
To generate load for our application, we employ
httperf [11], and optimize it for high throughput. Specif-
ically, we apply a patch for buffer overflows due to
FD SETSIZE checks in glibc and tune network re-
lated system parameters of the load generator VM such
as net.core.somaxconn, net.ipv4.ip local port range,
net.ipv4.tcp max syn backlog, etc. For the load balancer



(LB), we experiment with the popular Apache (version
2.4.7) LB running mod_proxy with mpm_event and the
asynchronous event-driven Nginx LB (version 1.4.6). For
the web server, we again experiment with the Apache web
server running mpm_prefork with mod_php to handle
PHP content and Nginx with PHP-FPM [12] to serve PHP
content using FastCGI protocol; we use PHP version 5.5.9
for both cases. For the Memcached tier, we use Mem-
cache version 1.4.31. To communicate with Memcached, the
web servers employ the libmemcached library. Finally, for
the database, we employ ardb [13] (version 0.9.3) which
uses the Redis protocol for communication and leverages
RocksDB [14] as the backend.
In terms of the KV data set, the key size is fixed at 11 bytes
and the value sizes range from 1 byte to 100 bytes. The value
sizes are distributed geometrically, meaning that smaller KV
pairs are more popular, as observed by Facebook [3]. The
data set contains a 100 Million KV pairs.
Our application is a simplified web service that serves PHP
jobs. Each job arrival triggers a request for one hundred
KV pairs (get requests). After parsing the request, the web
server issues a multi-get to the Memcached tier for the KV
pairs; note that several Memcached nodes might have to
be contacted to serve all KV pairs. In case of a miss, the
web server requests the KV pair from the database and then
inserts the KV pair back into Memcached, possibly leading
to evictions. We define response time to be the time elapsed
from when a request arrives at the LB to the time that it is
successfully served after fetching all requested KV pairs.
We deploy our application on modestly-sized VMs hosted
by an OpenStack cluster to mimic a cost-efficient deploy-
ment. All of our VMs run Ubuntu 14.04.3 OS with Linux
kernel version 3.13. The load generator and three web
servers are deployed on 4-vCPU, 8GB (m.standard) VMs.
Three Memcached servers are deployed on 2-vCPU, 4GB
(m.milli) VMs, together providing a hit rate in excess of
90% because of the skewed popularity distribution exhibited
by real web applications [3], [15]. The LB that handles
all incoming requests is deployed on a 8-vCPU, 16GB
(m.kilo) VM. To limit our focus to components upstream of
Memcached, we deploy the database on a dedicated physical
machine with 8 cores and 32GB memory; the database is
tuned to avoid any bottlenecks. In particular, we set an
appropriately sized block cache for RocksDB, maximize the
ulimit setting, and set the fs.file−max to a high value.
We also use persistent connections between the web servers
and database to reduce connection overheads.

4. Evaluation Results
We now discuss our software tuning and implementation
efforts to improve the throughput of our application. Most
of our efforts are directed at the LB and web server tiers.
We start with OS-level tuning in Section 4.1, followed by
process-level tuning in Section 4.2. Finally, we discuss the
impact of the communication model (sync versus async) and
our key results in Section 4.3. For all experiments in this
section, we report the average values across three runs.

160 180 200 220 240 260 280 300

ServerLimit →

8

9

10

11

12

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)→

10 15 20 25 30

Threads Per Child

Figure 2. Tuning the Apache LB ThreadsPerChild and MaxRequestWorkers.

4.1. OS-level tuning
For the LB and web server, we find that the most im-
portant parameters are network related, since they have to
handle several connections simultaneously. As such, we set
net.ipv4.tcp tw recycle and net.ipv4.tcp tw reuse to 1 to
allow sockets to be recycled and reused. Without these
settings, several sockets may linger in the TIME-WAIT state.
We also maximize the net.ipv4.ip local port range (1024–
65535) to allow several simultaneous network connections.
For the same reason, we also maximize ulimit to 65535.

4.2. Process-level tuning
Apache load balancer: Our Apache LB uses the
mpm_event module for processing incoming connections.
In particular, under this configuration, Apache acts as a
multi-process multi-threaded LB. The number of processes
is specified via the ServerLimit directive. Each process in
turn creates a number of server threads that handle requests;
this number is specified via the ThreadsPerChild directive.
The product of ServerLimit and ThreadsPerChild is limited
by the MaxRequestWorkers directive which represents the
maximum number of simultaneous requests that can be
served by the LB. If a new request arrives while all threads
are busy, it will be queued. While there are other config-
uration parameters to tune, we find that ServerLimit and
ThreadsPerChild suffice for process tuning; MaxRequest-
Workers can be set as the product of these two parameters.
In general, a high ServerLimit implies higher paralleliza-
tion, but also higher overhead. Specifically, as ServerLimit
increases, the web server can handle more requests simulta-
neously. However, as ServerLimit increases, the memory and
context switching overhead also increases. Likewise, a high
ThreadsPerChild implies higher parallelization and higher
overhead, though the memory overhead should not increase
since threads share the same address space.
We vary the ThreadsPerChild from 5 to 50, and vary the
ServerLimit from 100 to 500. Figure 2 shows a subset of
our results for a throughput of 100K ops/sec. We see that, as
expected, a very low or very high ServerLimit can negatively
impact performance. The impact of ThreadsPerChild is not
that clear. While in this figure it might seem that a higher
ThreadsPerChild is more beneficial, we found this not to be
the case for higher ServerLimit and higher throughput. In
general, we find that the best setting for ThreadsPerChild is
15 and that for ServerLimit is 240.
Apache web server: The Apache web server uses the



0 500 1000 1500 2000

Max Request Workers →

0

5

10

15

20

25

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→ Rate=100K ops/sec

Rate=300K ops/sec

Figure 3. Tuning the MaxRequestWorkers for Apache web server.

mpm_prefork module to handle PHP requests (PHP is
not thread safe, so we cannot use mpm_event). Under
this module, the MaxRequestWorkers controls the number of
simultaneous requests that can be handled; other parameters
do not affect performance significantly (ThreadsPerChild
and ServerLimit are not relevant for mpm_prefork). Fig-
ure 3 shows our results for MaxRequestWorkers under 1
Apache web server and 1 Memcached server. We see that
as long as MaxRequestWorkers is not too small, response
time is low; we set MaxRequestWorkers to 500.
Nginx load balancer: Nginx also uses multiple processes,
like Apache, but each process can simultaneously work on
many connections in parallel, with the limit per process set
by worker connections. Each Nginx process asynchronously
handles multiple connections by processing events across
connections using an event loop.
We set the number of Nginx processes to be equal to the
number of vCPUs at the LB VM, that is, 8. We vary the
worker connections parameter to determine its best value.
Figure 4 shows our results for response time as a func-
tion of worker connections for our application at differ-
ent throughputs; here, we use 1 web server and 1 Mem-
cached server. We see that performance initially improves as
worker connections increases, due to increase capacity for
handling multiple requests simultaneously. However, beyond
a point, performance worsens, likely due to the overhead of
too many worker connections. Based on this result, we set
worker connections to 1500.
In the above results, we use epoll (for efficient I/O utiliza-
tion) only on the Nginx LB. Figure 5 compares the perfor-
mance as a function of worker connections for a throughput
of 280K ops/sec under epoll at LB (epollLB) and epoll at LB
and web servers (epollEV). We see that under epollEV, the
optimal worker connections is now around 2100. Thus, the
optimal value for a parameter can depend on other parameter
and/or configuration values.
Nginx web server: The Nginx web server process can han-
dle http content but not PHP requests. Instead, we install the
PHP-FPM (FastCGI Process Manager) [12] to handle PHP
content. When the Nginx web server gets a PHP request,
it forwards it to FPM through a socket, and receives the
web page in html format after PHP is executed. PHP-FPM’s
key parameter is the pm.max children, which controls how
many FPM child processes are running. Thus, we now have
to optimize Nginx and FPM parameters.

worker_connections !
1000 1500 2000

R
es

po
ns

e 
tim

e 
(m

s)
 !

10

20

30

40

50 320K ops/sec 300K ops/sec 280K ops/sec

Figure 4. Tuning the worker connections for Nginx LB.

worker_connections !
1700 1800 1900 2000 2100

R
es

po
ns

e 
tim

e 
(m

s)
 !

15

20

25

30
epollLB
epollEV

Figure 5. Tuning the worker connections for Nginx LB when epoll is
selected for LB and web servers.

For the Nginx web server, we again set the number of Nginx
processes to be equal to the number of vCPUs, which is 4
for the web server VMs. We then vary the pm.max children
and worker connections parameters at the Nginx web server.
Figure 6 shows our results for different number of web
servers and 1 Memcached server under high load. Under
this load, the throughput is 320K ops/sec, 420K ops/sec,
and 500K ops/sec, respectively, for 1 web, 2 web, and 3
web servers. For all plots, we see that pm.max children of
75 provides low response times, likely due to low overhead.
Likewise, worker connections of 1800 provides a good bal-
ance between overhead and parallelization, resulting in low
response times. These are the settings we use for Nginx web
servers. We run the same experiment under moderate load as
well (throughput of 280K ops/sec, 360K ops/sec, and 380K
ops/sec, respectively, for 1 web, 2 web, and 3 web servers);
results are qualitatively similar and are thus omitted.

4.3. Main Result: Sync v/s Async connection model
We now discuss the key results of this paper. Given the dif-
ferent communication models of Apache (sync) and Nginx
(async), an important question is to evaluate their perfor-
mance. Given the multi-tier nature of our application, we
consider four deployment options: Apache LB + Apache
web server (apacheEV), Apache LB + Nginx web server
(apacheLB), Nginx LB + Nginx web server (nginxEV), and
Nginx LB + Apache web server (nginxLB). Intuitively, we
expect the async Nginx to perform better than Apache given
that our goal is to maximize throughput, and thus the appli-
cation will experience high request rates; this hypothesis is
supported by prior work [16].
Figures 7 and 8 show our experimental results for load
average and response time, respectively, under four different
LB + web server configurations. Here, we vary the number
of web servers and use only 1 Memcached server. From left
to right, we see that the peak throughput (x-axis) increases



1400 1600 1800 2000 2200

worker connections →

0

20

40

60

80
R

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)→ 75

100

125

Max Children

(a) One web server.

1400 1600 1800 2000 2200

worker connections →

0

20

40

60

80

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→ 75

100

125

Max Children

(b) Two web servers.

1400 1600 1800 2000 2200

worker connections →

0

20

40

60

80

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→ 75

100

125

Max Children

(c) Three web servers.
Figure 6. Response time as a function of worker connections of Nginx web server for different FPM pm.max children values under high request rate.

150 200 250 300 350

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50

L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(a) One web server.

150 200 250 300 350 400 450

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50

L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(b) Two web servers.

150 200 250 300 350 400 450 500 550

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50

L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(c) Three web servers.
Figure 7. Load average versus throughput comparison for different tier configurations, for 1, 2 and 3 web servers and 1 Memcached server.

150 200 250 300 350

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(a) One web server.

150 200 250 300 350 400 450

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(b) Two web servers.

150 200 250 300 350 400 450 500 550

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(c) Three web servers.
Figure 8. Response time versus throughput comparison for different tier configurations, for 1, 2 and 3 web servers and 1 Memcached server.

from 350K ops/sec to 450K ops/sec to almost 550K ops/sec,
while the load average and response time largely decrease
(except for the highest throughput values under three web
servers). This suggests that the bottleneck is the number
of web servers. Our application achieves a peak throughput
of around 0.55 million ops/sec after OS- and process-level
tuning; the configuration that achieves this throughput is
nginxLB (Nginx LB + Apache web servers). By comparison,
we easily surpassed 1 million ops/sec when using only 1
Memcached server (no LB or web servers) driven by the
Mutilate memcached load generator [17]. This shows that it
is not enough to simply optimize the Memcached tier since
the end-to-end application throughput can be much lower.
It is interesting to note that the configurations that achieve
low load averages and response times, apacheEV and ng-
inxLB, both have Apache as the web server. This is non-
trivial since we expect the async Nginx to outperform
Apache. We believe that the reason for the worse-than-
expected performance of Nginx web server is the communi-
cation overhead between Nginx and FPM via unix sockets.
Apache, on the other hand, has a mod_php interpreter as a
module that reduces this overhead. Note that Nginx, when
using FPM, is still asynchronous; it forwards the PHP re-

quest to the FPM and continues handling other connections
without blocking. Thus, despite its async nature, Nginx may
not be the best choice as a web server; Apache (the newer
versions) continues to perform well as LB and web server.
Figures 9 and 10 show our experimental results for load
average and response time, respectively, when using 3 Mem-
cached servers. Generally speaking, these results follow the
same trends as for the 1 Memcached server configuration.
Note that the peak throughput does not change much, vali-
dating our hypothesis that Memcached is not the bottleneck.
Upon close observation, we find that the performance is
slightly worse (about 10%) under 3 Memcached servers
than under 1 Memcached server. This is because under 3
Memcached servers, each web server now has to maintain
a lot more open connections with the Memcached tier,
resulting in higher overhead. Our results for 2 Memcached
servers (not shown due to lack of space) confirm this trend.
An interesting observation for the 3 Memcached servers
setup is the case of 3 web servers in Figures 9(c) and 10(c).
Here, the usually superior apacheEV and nginxLB both
perform poorly and do not achieve the high throughput that
nginxEV does. Further, as they approach the high throughput



150 200 250 300 350

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50
L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(a) One web server.

150 200 250 300 350 400 450

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50

L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(b) Two web servers.

150 200 250 300 350 400 450 500 550

Throughput (Kilo Ops/sec) →

0

10

20

30

40

50

L
o
a
d
-a

v
e
ra

g
e
 →

LA
apacheEV

LA
apacheLB

LA
nginxEV

LA
nginxLB

(c) Three web servers.
Figure 9. Load average versus throughput comparison for different tier configurations, for 1, 2 and 3 web servers and 3 Memcached servers.

150 200 250 300 350

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(a) One web server.

150 200 250 300 350 400 450

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(b) Two web servers.

150 200 250 300 350 400 450 500 550

Throughput (Kilo Ops/sec) →

0

20

40

60

80

100

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)→

RT
apacheEV

RT
apacheLB

RT
nginxEV

RT
nginxLB

(c) Three web servers.
Figure 10. Response time versus throughput comparison for different tier configurations, for 1, 2 and 3 web servers and 3 Memcached servers.

values, the load average and response times increase sharply.
We believe that the reason for this discrepancy is the high
CPU overhead of mpm_preform that uses 500 processes
for Apache web. Combined with the high number of con-
nections maintained by the web servers to the 3 Memcached
servers, likely results in lower-than-expected throughput.
Note that this is not the case for 1 and 2 web servers.
In summary, while we are able to obtain an end-to-end
throughput of about 0.5 million ops/sec, there is no single
optimal configuration as the optimal depends on the number
of web servers and the number of Memcached servers.

5. Conclusion
This paper evaluates the software tuning of multi-tier
Memcached-backed applications, such as modern web ap-
plications, deployed on the cloud. Without tuning, the end-
to-end throughput of such applications is much lower than
that achieved by the Memcached tier, suggesting bottlenecks
in the remaining service chain. Our experiments reveal that
tuning the number of worker threads at the load balancer
and web server tiers can significantly improve throughput.
Importantly, for our specific setup with Apache and Nginx,
we show that an asynchronous communication model at the
web server does not always improve throughput.

Acknowledgments
This work was supported by the U.S. National Science
Foundation under grants CNS-1622832 and CNS-1617046.

References
[1] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux Jour-

nal, vol. 2004, no. 124, pp. 5–5, Aug. 2004.

[2] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI 2013,
Lombard, IL, USA, pp. 385–398.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in SIGMET-
RICS 2012, London, England, UK, pp. 53–64.

[4] mediawiki.org, “memcached,” http : / / www. mediawiki . org / wiki /
Memcached, 2014.

[5] P. Stuedi, A. Trivedi, and B. Metzler, “Wimpy Nodes with 10GbE:
Leveraging One-sided Operations in soft-RDMA to Boost Mem-
cached,” in USENIX ATC 2012, Boston, MA, USA.

[6] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M.
Aamodt, “Characterizing and Evaluating a Key-value Store Applica-
tion on Heterogeneous CPU-GPU Systems,” in ISPASS 2012, New
Brunswick, NJ, USA, pp. 88–98.

[7] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek, “CPHASH: A
Cache-partitioned Hash Table,” in PPoPP 2012, New Orleans, LA,
USA, pp. 319–320.

[8] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,”
in NSDI 2013, Lombard, IL, USA, pp. 371–384.

[9] S. Hart, E. Frachtenberg, and M. Berezecki, “Predicting Memcached
Throughput Using Simulation and Modeling,” in TMS/DEVS 2012,
Orlando, FL, USA, pp. 40:1–40:8.

[10] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency,”
in SOCC 2014, Seattle, WA, USA, pp. 9:1–9:14.

[11] D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web Server
Performance,” ACM Sigmetrics: Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[12] “PHP-FPM - A simple and robust FastCGI Process Manager for
PHP,” https://php-fpm.org/.

[13] “ardb,” https://github.com/yinqiwen/ardb.

[14] “RocksDB — A persistent key-value store,” http://rocksdb.org/.

[15] N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink: Managing
server clusters on intermittent power,” in ASPLOS 2011, Newport
Beach, CA, USA, pp. 185–198.

[16] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu, “A Study
of Long-Tail Latency in n-Tier Systems: RPC vs. Asynchronous
Invocations,” in ICDCS 2017, Atlanta, GA, USA.

[17] “Mutilate: high-performance memcached load generator,” https:/ /
github.com/leverich/mutilate.


