
Modeling and Analysis of Performance under Interference in the Cloud

Scott Votke, Seyyed Ahmad Javadi, Anshul Gandhi
{svotke, seyyedahmad.javadi, anshul.gandhi}@stonybrook.edu

Stony Brook University

Abstract—One of the key performance challenges in cloud com-

puting is the problem of interference, or resource contention,

among colocated VMs. While prior work has empirically

analyzed interference for specific workloads under specific

settings, there is a need for a generic approach to estimate

application performance under any interference condition.

In this paper, we present an analytical model to estimate

performance as a function of various workload, system, and

interference conditions, including the intensity and length of

interference, for single- and multi-VM systems. Comparisons

with empirical results under various scenarios show that our

model can provide accurate latency estimations (less than

5% error). We employ our model to analyze systems under

interference, and derive useful results to aid practitioners.

1. Introduction

The cloud helps lower resource costs, provides virtually un-
limited and elastic resources, and enables a geo-distributed
presence, all of which are important for the success of
online services. Thus, many online services [1], [2] are now
provided by cloud-deployed Virtual Machines (VMs).

However, despite its many benefits, cloud computing
has its shortcomings. From the perspective of a latency-
sensitive user, one of the most significant drawbacks of the
cloud is interference. Performance interference is caused by
contention for physical resources, such as CPU or network,
among colocated VM users. Prior studies have shown that
application performance on VMs hosted on public and
private clouds can degrade by as much as 27× [3], [4],
[5] due to interference. Our own experiments, shown in
Figure 1, for a web server hosted on a private cloud under
contention, highlight the significant increase in application
response time under interference.

Prior works on interference analysis typically study ap-
plication performance under fixed workload and system con-
ditions and specific interference scenarios, as we discuss in
Section 6. However, applications often experience different
loads. Likewise, the service requirements of an application
can change over time due to, for example, upgrades and
updates to the application. Also, the size of the system, or
number of VMs employed, can change over time due to the
popularity of the application. Worse, interference itself can
occur with varying degrees of intensity and for different du-
rations. Thus, the lessons learnt from analyzing interference
under specific workload and interference conditions might
not hold true for other conditions.

As a concrete example, if resource contention for CPU
exists in a cloud environment under low application load,
it might result in negligible performance impact; on the

Request rate (req/s) →

70 80 90 100

P
e
rc

e
n
ta

g
e
 i
n
c
re

a
s
e
 i
n

re
s
p
o
n
s
e
 t

im
e
 (

%
)
→

0

50

100

150 3 mins interference

2 mins interference

1 min interference

Figure 1. Empirical results for increase in response time at a web server
under CPU interference as a function of the workload request rate (x-axis)
for different interference lengths; here, the length of the non-interference
phase is 5 minutes.

other hand, the same resource contention, but under heavy
application load, might result in significant performance
degradation. The increase in performance degradation as the
request rate increases in Figure 1 illustrates this problem.
Likewise, if interference only lasts for a very small time
period, it might not result in a noticeable performance
impact. However, the same interference can significantly
affect performance if it lasts for a longer time, as illustrated
by the different lines in Figure 1.

The central problem we consider in this paper is how
to model application performance under interference, es-
pecially as a function of the workload and interference
conditions. A key challenge in this modeling goal is that
performance under non-interference is not independent of

performance under interference. For example, during severe
interference, a backlog of unserviced requests is generated,
which can continue to impact performance even after inter-
ference ceases. Thus, a simple average of performance under
interference and performance under non-interference cannot
capture such dependencies, and would be inaccurate. Since
interference is a dynamic and transient phenomenon [6], our
model must track the backlog of requests to estimate the
overall performance.

In this paper, we develop a stochastic model to estimate

the impact of interference on application performance as a

function of the workload and interference. We specifically
focus on transactional workloads, such as online web ap-
plications, that are often hosted on the cloud [1], [2]. We
start by determining workload and interference character-
istics that affect application performance under interference
(Section 2). We then present a performance model that takes
these characteristics into account to estimate application re-
sponse time (Section 3). We validate our model by compar-
ing against empirical results from an OpenStack-deployed
web server under interference; our model estimates response

Service rate under interference (req/s) →

160 170 180 190 200 210

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

20

30

40

50

60

70
Request rate: 100 req/s

Request rate: 90 req/s

Request rate: 80 req/s

(a) Impact of service rate (or peak throughput) under
interference.

Interference:non-interference time ratio →

0.5 1 1.5

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

20

25

30

35

40

Request rate: 100 req/s

Request rate: 90 req/s

Request rate: 80 req/s

(b) Impact of ratio of time spent in interference to time spent
in non-interference.

Figure 2. Empirical results for response time as a function of different characteristics that define interference: (a) the service rate under interference, and
(b) the ratio of time spent in interference to time spent in non-interference. Workload characteristics, such as request rate, continue to affect response time.

time with less than 5% error across various workload and
interference conditions including different workload request
rates, different interference lengths, and different interfer-
ence intensities (Section 4).

Using our model, we analyze the impact of workload
and interference parameters on the performance of single-
and multi-VM applications (Section 5). Our analysis is
complementary to existing efforts that focus on interference
detection and mitigation [7], [8]. For example, we use our
model in Section 5.2 to evaluate the performance of various
scheduling policies for a cluster of VMs under interference
and assess when each policy is effective. Likewise, our
model can help identify interference parameters that have
a significant impact on system backlog. Thus, a model
that can estimate performance as a function of workload
and interference conditions can be valuable to performance
management efforts as well.

To summarize, this paper makes the following contributions:

• We examine the impact of workload and interference
characteristics on application performance.

• Based on this study, we develop an analytic model that es-
timates performance under interference. Validation against
empirical results show that our model can accurately
predict performance under different scenarios.

• Using our model, we analyze scheduling policies for a
multi-VM system under interference; our findings can
help guide the design of an interference-aware scheduler
for cloud-deployed applications.

2. Workload and Interference Characteristics

That Affect Application Performance

In order to build an interference-aware performance model,
we first study the various factors that impact application per-
formance under interference in the cloud. We then present
our model, in Section 3, that leverages these findings to
estimate performance.

2.1. Characterizing the workload

Workload characterization is a topic of research in itself.
For our purposes, we focus on high-level workload charac-
teristics that dictate the load of transactional services, such

as web applications. We borrow concepts from performance
modeling [9], [10] and characterize the workload using two
parameters: (i) the average workload request rate, and (ii)
the average service time. The former is simply the mean
arrival rate of requests at the VM, in units of req/s. The
latter is the mean time to complete a request, in seconds,
under negligible load; the inverse of average service time is
referred to as average service rate, and represents the peak
throughput of the VM.

The product of the average request rate and average
service time, which represents the rate of work coming into
the VM, can be used as a proxy for the system load [11].
Note that an increase in value of either parameter increases
the system load. Both parameters described above assume
no interference; the next subsection deals with parameters
under interference.

2.2. Characterizing interference

Interference is caused by contention among colocated VMs
for shared physical resources (such as CPU, network, and
cache [12], [13]) on the underlying host. Thus, to char-
acterize interference, we consider the dominant resource
under contention, which is the resource at the VM under
interference that is closest to saturation. The dominant re-
source can be identified either via resource usage monitoring
(at the VM) or via existing source-of-interference detection
techniques such as CRE [14] or CPI2 [15].

2.2.1. Service rate under interference

We again focus on high-level characteristics that help define
the impact of interference on application performance. The
first characteristic we consider is the intensity of interference
or resource contention; quantitatively, we define this as the
reduced service rate of the VM under interference, which is
also the peak system throughput under interference. Similar
parameters have also been used to define interference in
prior works, such as the “pressure” term in Cuanta [16] and
Bubble-Up [17].

Figure 2(a) shows the mean response time of our cloud-
deployed web server as a function of the service rate under
interference (see Section 4.1 for details of our experimental
setup). We create different interference levels here by gener-
ating CPU load on colocated VMs. We see that, from right

to left, response time increases consistently as service rate
under interference decreases.

Workload characteristics, such as request rate, continue
to affect mean response time under interference, but their
impact is amplified. In Figure 2(a), for example, response
time goes up, for a given service rate under interference,
as the request rate goes up. However, when interference
is low (right of the graph), the difference in response
time is negligible. From a queueing-theoretic perspective,
interference reduces the service rate of the VM. Thus, for
the same request rate, response time will be (non-linearly)
higher under interference than under non-interference since
the VM’s service capacity has decreased.

2.2.2. Interference length
The second parameter we consider is the duration of time
for which interference lasts. If we assume that interference
is periodic, we can also consider the ratio of the time spent
by the VM under interference to that under non-interference.

Figure 2(b) shows the mean response time of our cloud-
deployed web server as a function of the ratio of interfer-
ence to non-interference length. We see that response time
increases, somewhat sub-linearly, as this ratio increases.

Again, the impact of workload characteristics under
interference is amplified. In Figure 2(b), we see that, for a
given ratio, response time is higher for higher request rates.
However, when interference is low (left of the graph), the
difference in response time is almost negligible.

3. Analytic Model for Estimating Application

Performance Under Interference

We now present out analytic model for estimating perfor-
mance under interference. We will make use of all param-
eters introduced in Section 2 to define our model.

3.1. High-level idea

Our basic approach is to model the system as a Markov
chain, making the required Markovian assumptions. The
advantage of a Markov chain is that it can track the backlog
in the system as the VM (or server, used interchangeably)
goes in and out of interference; this is important since
interference is transient [6]. The resulting Markov chains
are complex, especially for the multi-server system case,
as we show in Section 3.4. We thus use Matrix Analytic
Methods [18] to solve the resulting Markov chains for the
distribution of number of requests in the system; this then
gives us mean response time under interference.

3.2. Model setup

We consider a system with k VMs and an average request
rate of λ req/s into the system. We assume that the k servers
are homogeneous and belong to the same tier, with a central
scheduler responsible for dispatching incoming requests to
servers (we discuss this further in Section 3.4). Denote
the average service rate under no interference by µH (H
here refers to “high”) and the average service rate under
interference by µL (L refers to “low”); we can, of course,
have multiple service rates under interference depending on
the intensity of interference, in which case we can think of

Variable Meaning

k Number of VMs

λ Request rate (req/s)

µH Service rate under no interference (req/s)

µL Service rate under interference (req/s)

1/αH Length of non-interference phase (s)

1/αL Length of interference phase (s)

TABLE 1. DESCRIPTION OF THE VARIABLES USED IN OUR MODEL.

µL as a vector. We consider interference to be periodic, with
average interference length denoted by 1/αL (in seconds)
and average non-interference length denoted by 1/αH (in
seconds). Thus, the rate of leaving the interference phase is
αL and that of leaving the non-interference phase is αH ,
for each server. That is, we consider the interference at
each VM to be an independent process; this makes sense
since VMs are often distributed in the cloud and need not
be on the same physical host, especially for large public
clouds, such as AWS and Azure, that have thousands of
physical hosts [19], [20]. The variables used in our analysis
are summarized in Table 1.

Based on the above notation, we can define system
load [11] as the ratio of average request rate to average

system service rate: λ/
(

k · µH/αH+µL/αL

1/αH+1/αL

)

. For stability,

we assume the load is less than one.
We use Markov chains to track performance as the

system moves between interference and non-interference. To
this end, we assume that the inter-arrival time and all service
times are exponentially distributed, as is common practice
when employing Markov chains [11], [18]. Further, we
assume that the time spent in the interference phase and the
non-interference phase is exponentially distributed. We refer
to the resulting Markov chains as M/M/k/int chains. While
we require these assumptions for tractability, we show, in
Section 4, that our model estimates are fairly accurate even
when such assumptions do not hold.

3.3. M/M/1/int: Markov chain for a single-server

system under interference

For a single-server system, our Markov chain tracks the
number of requests in the system, i, and the number of
servers under interference, j; note that j is either 0 or 1.
Requests at the server can either be served in a first-come-
first-server manner or via processor sharing. In case of the
former, the remaining (i − 1) requests wait in a queue.
The resulting Markov chain, with states (i, j), is shown in
Figure 3(a) for the case of a single interference intensity
resulting in service rate of µL under interference. Here, the
rate of going from (i, j) to (i + 1, j) is λ, and the rate of
going from (i + 1, j) to (i, j) is µL or µH depending on
whether the system is under interference (j = 1) or not
(j = 0). Finally, the rate of going from non-interference
to interference, or (i, 0) to (i, 1), is αH , and that of going
from interference to non-interference, or (i, 1) to (i, 0), is
αL. Note that the chain (the structure of the states and the
transitions in and out of states) repeats itself indefinitely.

We can extend this model to consider different intensities
of interference, as shown in Figure 3(b), where µL1 and

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

H H H

L L L

HL HL HL

(a) M/M/1 with 1 level of interference.

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

H H H

L1 L1 L1

0, 2 1, 2 2, 2

L2 L2 L2

0110

1221
02

20

0110

1221
02

20

0110

1221
02

20

(b) M/M/1 with 2 levels of interference.

Figure 3. Markov chain for an M/M/1 with (a) 1 level of interference, and (b) 2 levels of interference. The state space is denoted by (i, j), where i is the
number of requests at the system and j is the level of interference; j = 0 indicates no interference.

µL2 are two different service rates under interference corre-
sponding to different interference intensities. Note that we
are using j in this specific example to refer to the intensity
or level of interference, and not the number of servers under
interference. There are different rates of entering and leav-
ing these different interference intensities, along with the
possibility of going between them. Thus, the model can be
extended to handle an arbitrary range of interferences, albeit
at the cost of increased model complexity. For simplicity, we
only consider the case of a single interference.

3.4. M/M/k/int: Markov chain for a multi-server

system under interference

The multi-server case is complicated by the fact that we
now have more than 1 server (out of k) that can be under
interference. One might think that the Markov chain in
Figure 3(a) can be extended down to multiple rows to
account for the multiple servers under interference, but this
is not completely true. There are two challenges that must
be addressed before we can model a multi-server system
faithfully using Markov chains. First, how can we track

the number of requests that are at interference servers

versus not-interference servers? For example, consider the
case where we have 2 requests at the system (i = 2) and
k = 3. In this case, if only one server is under interference
(j = 1), then the 2 requests can either both be at the
2 non-interference servers, or one each at an interference
and non-interference server, respectively. Thus, the state
(i = 2, j = 1) does not provide complete information
about the system anymore for the multi-server case. Second,
how does the system decide which VM (interference versus

non-interference) to send the next incoming request to? For
example, if we are in state (i = 0, j = 1) and k = 2,
then the scheduler, or load balancer, can send the request
to the (j = 1) interference server or to the non-interference
server. While one might think the scheduler should prefer
non-interference VMs, keep in mind that the scheduler might
not be aware of the state of the VMs, especially in a public
cloud where users are not aware of the VM to host mapping,
and thus cannot predict interference [7], [12], [21]. Thus, in
the above (i = 0, j = 1) example, an interference-aware
scheduler would pick the non-interference VM for the in-
coming request, whereas an interference-oblivious scheduler
would have a 1/2 probability of picking either server.

3.4.1. 3-dimensional state space
To address the first issue, we consider a 3-dimensional state,
(i, l, j), where i and j are the number of requests in the
system and number of servers (out of k) under interference,
respectively, similar to the M/M/1/int, and l is the number
of requests at interference servers. Thus, l ≤ i and l ≤ j;
here, we assume that each server only serves one request
at a time and unassigned requests wait in a queue. Using
this state space, we can now address the k = 3 and (i =
2, j = 1) example above and define two states, (2, 0, 1) and
(2, 1, 1), to represent the cases where both jobs are at non-
interference servers or one job each is at a non-interference
and interference server, respectively. Note that l does not
always start from 0. For example, if j = k, meaning that all
servers are under interference, then l = min(i, k).

3.4.2. Scheduler-aware model
To address the second issue, we explicitly consider the
scheduling policy employed by the application in our model.
We consider three different representative scheduling poli-
cies for multi-VM systems under interference:

1) RandomSched: This is an interference-oblivious policy
that does not know which VMs are under interference.
Thus, of the available (free) y VMs, if x are under inter-
ference, the probability of routing an incoming request
to an interference VM is x/y.

2) SmartSched: This is an interference-aware policy, in-
spired by recent scheduler designs (e.g., Quasar [8] and
ICE [7]), that knows which servers are under contention.
Each incoming request is assigned to an available non-
interference VM, if it exists, else to an available interfer-
ence VM. If no VMs are available, the request is queued.

3) OptSched: This is an unrealistic but near-optimal policy
that knows which servers are under interference and can
instantaneously migrate, without any penalty, requests
from interference servers to available non-interference
servers. Thus, if a non-interference VM becomes avail-
able after serving a request, an existing request at an
interference VM is immediately migrated to it.

M/M/k/int under RandomSched:
Figure 4 shows the 2-dimensional Markov chain for the
multi-server system under interference employing the ran-
dom scheduler. The state space is denoted by (i, l, j), where

i, l, and j are as defined in Section 3.4.1. qi,l,j = j−l
k−i and

0, 0, 0 1, 0, 0

0, 0, 1

1, 0, 1

p0,0,1

H 2 H

H

k H
L

(k-1) H

2 L

0, 0, k 1, 1, k

L 2 L

H
k L

(k-1) HL

k, 0, 0

k H k H

k, k, k

k L k L

k HL

H
k L

1, 1, 1

HL

q0,0,1

L

1, 0, k-1

1, 1, k-1

H

H

L

(k-1) L

k, k-1, k-1

i, l-1, j-1

i, l, j-1

i, l, j

i, l, j+1

i, l+1, j+1

(j-l) L

l L (i-l+1) H

(k-j-i+l) H

(i-l) H

(k-j-i+l) H

(j+1-l) L

(l+1) L

i+1, l, j

i+1, l+1, j

pi,l,j

qi,l,j

(i+1-l) H

(l+1) L

i-1, l-1, j

i-1, l, j

qi-1,l-1,j

pi-1,l,j

l L

(i-l) H

Figure 4. Markov chain for an M/M/k/int under the random and smart schedulers. The state space is denoted by (i, l, j), where i is the number of requests
at the system, j is the number of servers under interference, and l is the number of requests at interference servers. For simplicity, in the figure, we only
show some states; however, we show all transitions into and out of states on the boundary and the generic state (i, l, j). The chain repeats for i ≥ k.

pi,l,j = 1 − qi,l,j , for i < k, are the probabilities that an
incoming request is assigned to an available interference
server and non-interference server, respectively. The chain
repeats for i ≥ k. In the non-repeating portion (i ≤ k),
we arrange all (i, l, j) states for a given i and j together
vertically, enabling a 2-dimensional chain despite the 3-
dimensional state space. Note that while the number of rows
in the repeating portion of the chain is (k+1), the number of
rows in each column of the non-repeating portion is not the
same. The 1st column has (k+1) rows, but the 2nd column
has 1·2+2·(k−1) = 2k rows, since each of the (k−1) pairs
of (i = 1, 1 < j < k) have two possibilities for l, 0 or 1.
Likewise, the 3rd column has 1·2+2·2+3·(k−3) = 3k−3
rows. Note that, in the non-repeating portion, the structure
of the Markov chain is symmetric around the mid-point in
the horizontal and vertical directions.

For transitions, consider the generic (i, l, j) state shown
at the center of Figure 4. An incoming request to this
state will be routed either to an available non-interference
server with rate λpi,l,j , thus transitioning to (i + 1, l, j),
or to an available interference server with rate λqi,l,j , thus
transitioning to (i + 1, l + 1, j). Of the i requests in the
system at (i, l, j), l of them are at interference servers, thus
departing with rate lµL to state (i−1, l−1, j), and (i− l) of
them are at non-interference servers, thus departing with rate
(i− l)µH to state (i− 1, l, j). Now, in terms of interference
striking any of the (k − j) non-interference servers, we
consider the two cases where the non-interference server
was either serving a request or not. In case of the former,
there are (i − l) such servers, assuming (i − l) ≤ (k − j),
and if interference strikes such a server, state (i, l, j) will
transition to (i, l + 1, j + 1) with rate (i − l)αH since the
request at this server will now contribute to l. In case of the
latter, the remaining (k−j−(i−l)) non-interference servers
will transition to (i, l, j + 1), each with rate αH , for a total
rate of (k− j− i+ l)αH . Finally, interference at any of the
j servers can cease, resulting in a transition to (i, l, j − 1)
with rate (j − l)αL if the server is free, or a transition to
(i, l−1, j−1) with rate lαL if the server is serving a request
(since the request at that server will no longer contribute to
l). Similarly, we can define the rates into (i, l, j).

0, 0 1, 0

0, 1 1, 1

H 2 H

H 2 H

k HL

(k-1) H
2 L

0, k 1, k

L 2 L

H
k L

k HL

(k-1) H
2 L

H
k L

k, 0

k, 1

k H k H

(k-1) H+ L

k, k

k L k L

k HL

(k-1) H
2 L

H
k L

(k-1) H+ L

Figure 5. Markov chain for an M/M/k with interference under the optimal
scheduler (with instantaneous migration). The state space is denoted by
(i, j), where i is the number of requests at the system and j is the number
of servers (out of k) that are under interference.

M/M/k/int under SmartSched:

The Markov chain for the M/M/k/int under SmartSched is
exactly the same as that under RandomSched, as shown
in Figure 4, except for the pi,l,j and qi,l,j probabilities,
which can only take on values 0 or 1 under SmartSched.
Specifically, pi,l,j = 1 if (i− l) < (k− j), and 0 otherwise;
qi,l,j = 1−pi,l,j . However, we still require the same number
of states, even though some of them will not have any
λ transitions into them. For example, consider the state
(1, 1, 1) under k = 2 (top left of Figure 4). There is no
λ transition into this state for SmartSched since q0,0,1 = 0
as i < (k− j) for (0, 0, 1). Yet, we can get to (1, 1, 1) from
(1, 0, 0) with rate αH , from (1, 1, 2) with rate αL, and from
(2, 1, 1) with rate µH .

M/M/k/int under OptSched:

Figure 5 shows the 2-dimensional Markov chain for the
multi-server system under interference employing the opt
scheduler. The state space is (i, j), where i is the num-
ber of requests at the system and j is the number of
servers (out of k) that are under interference. Fortunately,
in this case, we do not need to track l, the number of
requests at non-interference servers, since, under OptSched,

Request rate, λ (req/s) →

70 80 90 100

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

0

20

40

60

80
µ

L
=156 req/s

µ
L
=180 req/s

µ
L
=187 req/s

(a) No interference for 1/αH = 5 minutes
followed by interference for 1/αL = 3 minutes.

Request rate, λ (req/s) →

70 80 90 100

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

0

20

40

60

80 µ
L
=156 req/s

µ
L
=180 req/s

µ
L
=187 req/s

(b) No interference for 1/αH = 3 minutes
followed by interference for 1/αL = 3 minutes.

Request rate, λ (req/s) →

70 80 90 100

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

0

20

40

60

80

µ
L
=156 req/s

µ
L
=180 req/s

µ
L
=187 req/s

(c) No interference for 1/αH = 2 minutes
followed by interference for 1/αL = 3 minutes.

Figure 6. Model validation results: empirical (markers) versus theoretical (lines) response times as a function of request rate (λ) for various interference

service rates (µL) with an interference phase length (α−1

L
) of 3 minutes and non-interference phase length (α−1

H
) of (a) 5 minutes, (b) 3 minutes, and (c)

2 minutes. Modeling error ranges from 1.21% to 9.19% with average modeling error of 4.58%.

l = min(j, i − (k − j)) if i < (k − j), and l = 0
otherwise. This is because, at all times, requests are first
routed/migrated to the (k− j) non-interference servers, and
the remaining requests, if any, are sent to the j interference
servers. We thus drop l from the state space and denote a
state as (i, j), similar to M/M/1/int, resulting in the Markov
chain shown in Figure 5; the chain repeats for i ≥ k. Here,
the different rows illustrate the (k+1) different values that
j can take, from 0 to k, representing the number of servers
under interference. In terms of transitions, for a generic (i, j)
in the non-repeating portion (i < k), the rate to (i− 1, j) is
iµH if i < (k − j), and (k − j)µH + (i − (k − j))µL

otherwise. With rate jαL, we transition up to (i, j − 1)
and with rate (k − j)αH , we transition down to (i, j + 1).
Finally, with rate λ, we transition forward to (i+1, j). For
the repeating portion (i ≥ k), note that it is the same as
that for M/M/k/int under OptSched since, in the repeating
portion, all new requests queue up and do not have to be
immediately assigned to a server.

3.5. Solving the Markov chains

Given the complexity of the Markov chains, and the fact
that we have transitions between several states, we resort to
Matrix Analytic Methods to numerically solve the Markov
chains and derive the limiting probabilities of being in each
state; for more details, we refer the reader to [18]. After
the probabilities of each state, s, referred to as πs, have
been derived, we then compute the probability of having x
requests in the system, πx. Based on the Markov chain in
question, we have πx =

∑

i=x π(i,l,j) (for M/M/k/int under
RandomSched and SmartSched) or πx =

∑

i=x π(i,j) (for
M/M/1/int and M/M/k/int under OptSched). Note that the
probabilities for states in the repeating portion are related to
the probabilities of the states in the finite non-repeating por-
tion in a simple manner, allowing infinite sums to collapse
into simple expressions, as is typically the case under Matrix
Analytic Methods [18]. From the πx, we derive the mean
number of requests in the system, E[N] =

∑

x x · πx; the
mean response time is then derived via Little’s Law [22] as
E[T] = E[N]/λ. Note that πx is the distribution of number
of requests in the system, from which the distribution of the
backlog, or queued requests, can also be obtained.

4. Model Validation

We now validate our analytical model by comparing its
response time estimates with empirical measurements ob-
tained from an experimental testbed. We also validated
our model by comparing against known results for the
M/M/k [11] when µH = µL, but we only discuss empirical
validation results here.

4.1. Experimental setup

We set up an experimental testbed in an OpenStack private
cloud with a web server VM under CPU contention, driven
by a client VM. In particular, our setup consists of two
physical hosts (Dell C6100), each with two 6-core CPUs
and 48 GB memory, which are part of a larger OpenStack
private cloud setup. The hosts are connected to a network
switch via a 1Gb Ethernet cable. On the first host, which
is our target host, we launch 4 VMs, each with 4 vCPUs
and 4GB memory. Note that the total vCPU request is 16,
which exceeds the core count of 12 on the physical host, thus
resulting in CPU oversubscription (overcommit is enabled
by default in OpenStack). One of the 4 VMs acts as the web
server, and the remaining three colocated VMs create CPU
contention. On the second host, we run a client VM which
sends requests to the web VM on the first host.

The web server VM on the first host uses the Apache
HTTP server (version 2.4) [23], along with PHP 5.5, to host
a CPU intensive php script. The remaining three colocated
VMs on this host employ the stress-ng tool [24] to create
controllable CPU contention. The client server VM uses
httperf [25] as the load generator to issue requests for the
php script at a controllable rate.

In our experiments, the inter-request time and php ser-
vice time distributions are deterministic. We create periodic
contention intervals such that the length of the contention
and non-contention intervals are deterministic with different
lengths. Note that this is different from the Markovian
assumptions in our model. In each experiment, we set a
request rate, and create alternating phases of contention and
non-contention. We log the response time of each request,
and compute the mean response time for each experiment
over its entire duration. Finally, to derive the service rate
under interference and non-interference, we run a separate
experiment where we stress the web server with increasing

Request rate, λ (req/s) →

10 20 30 40 50

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

0

50

100
µ

L
=50, α

L
=60

-1

µ
L
=40, α

L
=60

-1

µ
L
=50, α

L
=120

-1

µ
L
=µ

H

Figure 7. Response time for the M/M/1/int as a function of the request rate
(λ) for various interference scenarios (µL and αL). Here, µH = 100 req/s

and α−1

H
= 10 minutes. Also shown, for comparison, is the response time

of the M/M/1 without interference (µL = µH).

request rates, and record the peak throughput at which the
VM saturates. Using this methodology, we find that our
service rate under non-interference (µH) is about 220 req/s.

4.2. Comparing empirical and model results

To validate our model, we run several experiments with dif-
ferent values of request rate (λ), length of non-interference
phase (α−1

H), length of interference phase (α−1
L), and con-

tention levels (that result in different µL values).
Figure 6 shows our validation results, where we compare

the model-predicted values (shown as lines) with empirical
measurements (shown as markers). For each figure, the
interference phase length is set to 3 minutes, and the request
rate is varied for different interference levels. We vary the
non-interference phase length between the figures from 5
minutes to 2 minutes. Since we have 4-vCPU VMs, in our
model we consider the request rate and service rate at each
vCPU to be one-fourth of the total request and service rate.

We see that the model-predicted mean response time
increases with (i) an increase in request rate, or (ii) an
increase in interference level (or a decrease in service
rate under interference), or (iii) a decrease in the length
of the non-interference phase. Throughout, the empirical
measurements of response time are in close agreement with
the model estimates. The average modeling error across all
experiments is 4.58%, with per-experiment error ranging
from 1.21% to 9.19%.

5. Analysis and Evaluation

In this section, we employ our model to analyze and evalu-
ate the application performance of single-server and multi-
server systems under interference. Where applicable, we
highlight important observations and derive helpful rules-
of-thumb to aid practitioners.

5.1. Analyzing a single VM under interference

It is instructive to first analyze the performance under inter-
ference for a single VM before considering multiple VMs.
Further, most of the prior work on interference focuses on a
single VM [15], [16], [17], thus motivating this subsection.

5.1.1. Impact of interference intensity
Figure 7 shows response time as a function of request rate
for different interference scenarios with µH = 100 req/s

Service rate under interference, µ
L
 (req/s) →

30 40 50 60

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

20

30

40

µ
H

=80

µ
H

=100

µ
H

=120

Figure 8. Response time for the M/M/1/int as a function of the service rate
under interference (µL) for various non-interference service rates (µH)
with λ = 25 req/s, α−1

H
= 10 minutes, and α−1

L
= 1 minute.

Length of interference phase, α
L

-1
 (mins) →

0 10 20 30

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

20

30

40 α
H

-1
=10mins

α
H

-1
=30mins

α
H

-1
=60mins

Figure 9. Response time for the M/M/1/int as a function of the length of

the interference phase (α−1

L
) for various non-interference phase lengths

(α−1

H
) with λ = 25 req/s, µH = 100 req/s, and µL = 50 req/s.

and α−1
H = 10 minutes. For comparison, we also show the

response time under the M/M/1 without interference (black
line with markers). Starting with the solid blue line which
denotes the case of 1-minute long interference phases and a
50% reduction in service rate, we see that interference can
significantly increase response time, especially under mod-
erate to high request rates, when compared to the M/M/1
without interference. In terms of load (see Section 3.2),
the 10–50 req/s corresponds to roughly 10% – 50% load.
Response time worsens if we increase the length of the
interference phase (green dotted line) or the intensity of
interference (dashed red line). Importantly, we observe that:

Observation 1. Response time is much more sensitive to the
intensity of interference than the length of interference.

Figure 8 looks more closely at the effect of interference
and non-interference service rates on response time. Here,
λ = 25 req/s, α−1

H = 10 minutes, and α−1
L = 1 minute.

We see that response time is very sensitive to the intensity
(service rate) under interference. Further, response time
quickly increases with either a decrease in the service rate
under interference (µL) or a decrease in the non-interference
service rate (µH).

Observation 2. Response time increases super-linearly with
a decrease in service rate under interference.

5.1.2. Impact of interference & non-interference lengths
Figure 9 looks at the effect of interference and non-
interference phase lengths. Here, λ = 25 req/s, µH = 100
req/s, and µL = 50 req/s. While response time increases
with the length of the interference phase and decreases

Rate of interference, α
H

 = α
L
 (s

-1
) →

0 20 40 60 80 100

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

20

25

30

M/M/1/int: µ
H

=100, µ
L
=50, λ=25

M/M/1: µ = (µ
H

+µ
L
)/2 = 75, λ=25

Figure 10. Response time for the M/M/1/int as a function of interference
rate (αH = αL) with λ = 25 req/s, µH = 100 req/s, and µL = 50
req/s. Also shown (dashed line) is the response time of an M/M/1 without
interference with service rate equal to average service rate of the M/M/1/int.

with the length of the non-interference phase, we see an
interesting behavior:

Observation 3. Response time increases sub-linearly with
an increase in length of the interference phase.

Based on the above three observations, we suggest:

Rule-of-thumb 1. The intensity of interference is more
significant than its length for a single VM. Hence,
interference mitigation approaches should focus more on
reducing interference, even if it takes longer to do so.

5.1.3. Impact of rate (or frequency) of interference

Figure 10 investigates the impact of rate of interference on
response time. Here, we fix λ = 25 req/s, µH = 100 req/s,
and µL = 50 req/s, and set αH = αL. Then, we vary
αH and αL together to see the impact on response time.
Interestingly, as the rate (length) of interference increases
(decreases), the response time decreases, and approaches
the response time under an M/M/1 with service rate equal
to the average of service rates under interference and non-
interference. We summarize this finding as:

Observation 4. The ratio of length of interference and length
of non-interference is not a good metric when evaluating
performance under interference.

Thus, while Figure 2(b) in Section 2 is informative, it
will change depending on the absolute lengths. We believe
the reason behind this observation is that since response
time increases quickly under interference, the longer the
interference period, higher will be the backlog, resulting in
non-linearly higher response times.

We verify this by plotting the CDF of the backlog, or
the number of queued requests (obtained via the π estimates
determined in Section 3.5), in Figure 11. Here, we set λ =
25 req/s, µH = 100 req/s, and µL = 20 req/s; we then
fix a ratio, 0.1, of interference length to non-interference
length, and vary the non-interference length. We see that
the backlog is worse for longer lengths, despite the same
interference intensity (µL) and ratio of interference length
to non-interference length. Note that the value at x = 0
corresponds to no backlog (no queueing). Thus, a single long
interference period is worse than several shorter periods.

x →

0 20 40 60 80 100

C
D

F
,

P
r(

b
a
c
k
lo

g
 ≤

 x
)
→

0.8

0.85

0.9

0.95

1

α
H

-1
=10 · α

L

-1
 = 10s

α
H

-1
=10 · α

L

-1
 = 30s

α
H

-1
=10 · α

L

-1
 = 100s

Figure 11. CDF of request backlog (queued requests) for different non-
interference lengths and a fixed ratio (0.1) of interference to non-
interference length. λ = 25 req/s, µH = 100 req/s, and µL = 20 req/s.

Rule-of-thumb 2. Frequent but short interference periods are
less harmful than infrequent but long periods, assuming
the interference intensity is the same.

Practitioners may use this result, for example, to prefer colo-
cation with transactional workloads over batch workloads.
Note that Rules-of-thumb 1 and 2 are different – #1 focuses
on interference intensity (or µL) versus length, whereas #2
focuses on frequency of interference, given fixed intensity.

5.2. Multi-VM systems under interference

We now analyze the multi-VM M/M/k/int Markov chains
under RandomSched, SmartSched, and OptSched. Recall,
from Section 3.4.2, that RandomSched is the interference-
oblivious policy that randomly routes requests to avail-
able VMs. SmartSched is interference-aware and preferably
routes requests to available non-interference VMs. OptSched
is the unrealistic policy that is interference-aware, but can
also immediately migrate requests from interference to non-
interference VMs, when possible.

The goal of our analysis is to understand the impact
of the various factors, including the scheduling or load-
balancing policy, on application performance under inter-
ference. While interference-aware schedulers have been pro-
posed [7], [8], they are typically empirically evaluated only
under specific workload and interference conditions.

5.2.1. Impact of #VMs and request rate

Figure 12 shows response time as a function of request rate
for different values of k under all three schedulers. Here,
µH = 100 req/s, µL = 25 req/s, α−1

H = 10 mins, and

α−1
L = 1 min. The request rate range in each case is chosen

to highlight the difference in performance between policies.
In terms of load, the request rate range in Figures 12(a),
12(b), and 12(c) roughly corresponds to 0.1 – 0.3, 0.3 –
0.6, and 0.4 – 0.75, respectively.

In general, we see that the performance difference be-
tween policies is greatest under low to moderate request
rates. Specifically, the performance under RandomSched is
about 10–20% worse than OptSched at low request rates
(left of the graphs); note that the y-axis starts at 10ms
(and not 0) to better highlight the results. SmartSched is
also worse than OptSched, as expected, but the difference
is usually about 5% or so. At high request rates, the
performance under all policies starts to converge. This is

Request rate, λ (req/s) →

20 30 40 50

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

15

20

Random

Smart

Opt

(a) k = 2 VMs.

Request rate, λ (req/s) →

150 200 250 300

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

15

20

Random

Smart

Opt

(b) k = 5 VMs.

Request rate, λ (req/s) →

400 500 600 700

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

15

20

Random

Smart

Opt

(c) k = 10 VMs.

Figure 12. Response time as a function of request rate for different k values. Here, µH = 100 req/s, µL = 25 req/s, α−1

H
= 10 mins, and α−1

L
= 1 min.

Service rate under interference, µ
L
 (req/s) →

10 20 30 40 50

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

11

12

13
Random

Smart

Opt

(a) Impact of interference intensity.

Length of interference phase, α
L

-1
 (mins) →

1 2 3 4

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)
→

10

12

14

16

18

Random

Smart

Opt

(b) Impact of interference length.

x →

0 1 5 10 15

C
D

F
,

P
r(

#
 R

e
q
u
e
s
ts

 ≤
 x

)
→

0

0.5

1

Random

Smart

Opt

(c) Build up of requests under interference.

Figure 13. Impact of interference on the performance of multi-VM systems. Here, k = 10, λ = 400 req/s, µH = 100 req/s, and α−1

H
= 10 mins.

because, at high load, incoming requests will be queued with
high probability, thus obviating the scheduling decision. In
other words, at high request rates, workload characteristics
start dominating over the scheduling decision. Further, note
that all Markov chains are similar in the repeating portion
(i ≥ k), which is where most of the time is spent at high
load.

Likewise, we find that the difference between perfor-
mance under different policies decreases as k increases; for
k > 10, we find that the difference in performance across all
policies is typically less than 10% for the parameter values
in Figure 12. Even for the M/M/k without interference, it
is known that, for a given load, performance significantly
improves with k [11]. This is because the probability that an
incoming request finds all VMs busy decreases quickly with
an increase in k. Note that µ−1

H = 10ms is the (theoretical)
lowest achievable response time.

Observation 5. For multi-VM scheduling, the performance
gap between policies tends to decrease with an increase
in request rate and/or an increase in the number of VMs.

5.2.2. Impact of interference characteristics

Figure 13(a) shows response time as a function of in-
terference intensity (represented by the service rate under
interference, µL) for different schedulers with k = 10,
λ = 400 req/s, µH = 100 req/s, α−1

H = 10 mins, and

α−1
L = 1 min. We see that response time, and the difference

in response times, for the various schedulers increases as
interference intensity increases (right to left).

Figure 13(b) shows response time as a function of inter-
ference length (α−1

L) for different schedulers with the same
parameters as above with µL = 25 req/s. Again, response
time, and the difference in response times, increases as the
interference length increases.

However, comparing Figures 13(a) and 13(b) (note the
difference in y-limits), we see that response time, and the
difference in response time under different schedulers, is
more sensitive to interference length than interference in-
tensity. This is in contrast to our Rule-of-thumb 1 for a
single VM. The reason for this difference in behavior under
single-VM and multi-VM is that, for multi-VM, even if the
intensity of interference is high, the probability that several

servers are simultaneously under interference is low; thus,
the impact of interference intensity across all requests in
the system is amortized. For a single VM, the probability
of being under interference is simply α−1

L /(α−1
L + α−1

H);
since there is only 1 VM, requests in the system are directly
affected by interference intensity.

Rule-of-thumb 3. For multi-VM interference-aware schedul-
ing, interference length is more critical than its intensity.

We investigate this issue further in Figure 13(c) which
shows the probability distribution of number of requests in
the system (obtained via the πs from Section 3.5). Here,
x > k = 10 implies queueing. Since SmartSched and
OptSched avoid VMs under interference, they tend to have
fewer outstanding requests, resulting in better performance.
RandomSched treats all VMs equally and thus has a worse
distribution of requests in system.

5.2.3. Evaluating interference-aware scheduling

We now investigate the improvement in performance af-
forded by interference-aware scheduling policies, such as
OptSched and SmartSched. Figures 14(a) and 14(b) show
the improvement over RandomSched for different interfer-
ence conditions with α−1

L = 2 mins and α−1
L = 8 mins,

respectively, and k = 10, λ = 200 req/s, µH = 100 req/s,
and α−1

H = 10 mins; these values were chosen to highlight
the difference in behavior between policies. We see that
both OptSched and SmartSched provide significant improve-

Service rate under interference, µ
L
 (req/s) →

10 20 30 40 50R
e
s
p
o
n
s
e
 t

im
e

re
d
u
c
ti
o
n
 (

%
)
→

0

25

50

Opt

Smart

(a) Interference length (α−1

L
) = 2mins.

Service rate under interference, µ
L
 (req/s) →

10 20 30 40 50R
e
s
p
o
n
s
e
 t

im
e

re
d
u
c
ti
o
n
 (

%
)
→

0

25

50

Opt

Smart

(b) Interference length (α−1

L
) = 8mins.

Service rate under interference, µ
L
 (req/s) →

×10
-3

2 4 6 8 10

R
e
s
p
o
n
s
e
 t

im
e

re
d
u
c
ti
o
n
 (

%
)
→

0

25

50
Opt

Smart

(c) Interference = 2mins but with longer requests.

Figure 14. Reduction in response time afforded by OptSched and SmartSched over RandomSched for various interference conditions. Here, k = 10 VMs.

ments over RandomSched, to the tune of 50%. However,
at high interference (lower values of µL in Figure 14(b)),
the improvements are not that great because VMs are often
under interference (since α−1

L = 8 mins) and there is less
room for improvement via interference-aware scheduling.
The improvements also decrease with an increase in request
rate and k, as mentioned in Observation 5. Based on these
figures, it might seem that OptSched, which exploits migra-
tion, does not provide significant benefits over SmartSched.

Figure 14(c) considers longer requests to highlight the
importance of migration. We keep α−1

H = 10 mins and

α−1
L = 2 mins, but vary other parameters to emulate longer

service times. We set λ = 0.04 req/s, µH = 0.02 req/s
(or, 50s request length), and µL is varied accordingly. This
time, we see that OptSched provides bigger improvements
(almost 2×) over SmartSched, suggesting that migration is
more helpful for longer requests. In summary:

Rule-of-thumb 4. Interference-aware schedulers that detect
and avoid interference can significantly improve perfor-
mance in multi-VM settings, especially under moderate
interference conditions. The ability to migrate VMs is
also beneficial, but only for longer requests.

While the above conclusion might not seem non-trivial, it
does help to further validate our model. Importantly, our
model can suggest exact parameter thresholds or conditions
under which migration and interference-aware scheduling
will be most beneficial, thus justifying their use. Finally,
our model can also be extended to analyze interference-
aware scheduling when the detection accuracy is not perfect,
which is often the case in practical settings [26], [27]. We
can model this by assigning a small probability (qi,l,j , see
Section 3.4.2) to route an incoming request to an interfer-
ence VM even if a non-interference VM is present. We can
also model the realistic case where migration incurs over-
heads [28] by incorporating setup times [29] for migration.

6. Related Work

Matrix Geometric/Analytic Methods [30], [31] are often
widely employed to analyze the performance of single-
server queues with phase-type distributions [11]. Of these,
our model is closest to queueing systems with modulated
service rates. Eisen [32] was among the first to consider
queues with modulated service, but the analysis, using Gen-
erating Functions, was limited to an M/M/1 queue with
slowdowns. In a follow-up work [33], Eisen analyzed the
M/M/1 system via difference equations.

More recently, Zhou and Gans [34] analyzed an M/M/1
queue where the service rate changes at the end of service

according to some probabilities. Mahabhashyam and Gau-
tam [35] extended this work to allow service rates to change
while in service. In our work, we focus on interference, and
extend our model to M/M/k queues with various scheduling
policies. While we employ Matrix Analytic Methods to
solve our modeled Markov chains, we believe that Gen-
erating functions (see, for example [36]) or combinatorial
techniques (that explicitly derive the rate matrix [37], [38])
could also apply. Recent works, such as RRR [39], have also
proposed techniques to solve M/M/k-based chains that have
a specific repeating structure; unfortunately, our complex
M/M/k/int chains are not amenable to such methods.

There are also prior experimental works on analyzing
interference. Cuanta [16] and Bubble-Up [17] use controlled
experiments to assess the impact of different intensities of
contention on performance; Cuanta focuses on on-chip con-
tention and Bubble-Up on memory contention. Paragon [27],
Quasar [8], and ICE [7] use machine learning to predict
interference, and then leverage their findings to design
interference-aware schedulers. CloudScope uses a discrete-
time Markov chain to track the resource usage of VMs,
and then designs an interference-aware migration scheme.
Casale et al. [40] and DIAL [41] develop simple queueing
models to estimate response time under interference, but do
not consider the transient nature of interference. While effec-
tive, the analyses in the above works do not take workload
characteristics and interference length into account.

7. Conclusion, Limitations, and Future Work

This paper presents a stochastic performance model for
cloud-deployed applications under interference. Our model
leverages Markov chains to track the system state as a
function of various workload and interference characteris-
tics, and provides estimates of request backlog and response
time. Comparisons with an OpenStack-deployed web server
under CPU contention highlight the accuracy of our model
(average error of less than 5%).

The assumption of exponentially distributed variables is
a significant limitation of our Markov chain-based modeling
approach. We will investigate Phase-type distributions as
part of future work to somewhat relax this assumption. We
will also expand our validation efforts and consider different,
possibly simultaneous, resource contentions.

Acknowledgements

This work was partially supported by NSF grants CNS-
1617046 and CNS-1464151.

References

[1] J. Ciancutti, “5 Lessons We’ve Learned Using AWS,” http://techblog.
netflix.com/2010/12/5-lessons-weve-learned-using-aws.html, 2010.

[2] “AWS Case Study: Expedia,” https://aws.amazon.com/solutions/case-
studies/expedia.

[3] D. Ghoshal, R. S. Canon, and L. Ramakrishnan, “I/O Performance
of Virtualized Cloud Environments,” in Proceedings of the Second

International Workshop on Data Intensive Computing in the Clouds,
Seattle, WA, USA, 2011, pp. 71–80.

[4] G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center,” in Proceedings of the

29th IEEE International Conference on Computer Communications,
San Diego, CA, USA, 2010, pp. 1163–1171.

[5] A. Javadi, S. Mehra, B. Vangoor, and A. Gandhi, “UIE: User-centric
Interference Estimation for Cloud Applications,” in Proceedings of the

2016 IEEE International Conference on Cloud Engineering (Work-

in-Progress track), ser. IC2E ’16, Berlin, Germany, 2016.

[6] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in
Proceedings of the 15th International Middleware Conference, ser.
Middleware ’14, Bordeaux, France, 2014, pp. 277–288.

[7] A. Maji, S. Mitra, and S. Bagchi, “ICE: An Integrated Configuration
Engine for Interference Mitigation in Cloud Services,” in Proceedings

of the 2015 IEEE International Conference on Autonomic Computing,
Grenoble, France, 2015, pp. 91–100.

[8] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and
QoS-Aware Cluster Management,” in Proceedings of the 19th In-

ternational Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’14, Salt Lake City,
UT, USA, 2014, pp. 127–144.

[9] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley-
Interscience, 1975.

[10] ——, Queueing Systems, Volume 2. New York: Wiley-Interscience,
1976.

[11] M. Harchol-Balter, Performance Modeling and Design of Computer

Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[12] A. Gandhi, P. Dube, A. Karve, A. Kochut, and H. Ellanti, “The
Unobservability Problem in Clouds,” in Proceedings of the 2015

IEEE International Conference on Cloud and Autonomic Computing,
Cambridge, MA, USA, 2015.

[13] C. Delimitrou and C. Kozyrakis, “iBench: Quantifying interference
for datacenter applications,” in Proceedings of the 2013 IEEE Inter-

national Symposium on Workload Characterization, 2013, pp. 23–33.

[14] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting Performance
Interference in Cloud-based Web Services,” in Integrated Network

Management (IM), 2015 IFIP/IEEE International Symposium on.
IEEE, 2015, pp. 423–431.

[15] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“CPI 2: CPU Performance Isolation for Shared Compute Clusters,”
in Proceedings of the 8th ACM European Conference on Computer

Systems. ACM, 2013, pp. 379–391.

[16] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for consol-
idated virtual machines,” in Proceedings of the 2nd ACM Symposium

on Cloud Computing, ser. SOCC ’11, Cascais, Portugal, 2011, pp.
1–14.

[17] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations,” in Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO ’11,
Porto Alegre, Brazil, 2011, pp. 248–259.

[18] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic

Methods in Stochastic Modeling. Philadelphia, PA, USA: ASA-
SIAM, 1999.

[19] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A Berkeley view of cloud computing,” EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28, 2009.

[20] “A Rare Peek Into The Massive Scale of AWS,” https: / /www.
enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws.

[21] D. Novakovi, N. Vasi, S. Novakovi, D. Kosti, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance
interference in virtualized environments,” in Proceedings of 2013

USENIX Annual Technical Conference, ser. ATC ’13, San Jose, CA,
USA, 2013, pp. 219–230.

[22] J. Little, “A Proof of the Queueing Formula L = λW ,” Operations

Research, vol. 9, pp. 383–387, 1961.

[23] “The Apache HTTP Server Project,” https://httpd.apache.org.

[24] “Stress-ng,” http://kernel.ubuntu.com/∼cking/stress-ng.

[25] D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web Server
Performance,” ACM Sigmetrics: Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[26] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, and
W. Knottenbelt, “CloudScope: Diagnosing and Managing Perfor-
mance Interference in Multi-tenant Clouds,” in Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (MAS-

COTS), 2015 IEEE 23rd International Symposium on, Atlanta, GA,
USA, 2015, pp. 164–173.

[27] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters,” in Proceedings of the Eighteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’13, Houston, TX,
USA, 2013, pp. 77–88.

[28] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a Comprehensive
Performance Model of Virtual Machine Live Migration,” in Proceed-

ings of the Sixth ACM Symposium on Cloud Computing, ser. SoCC
’15, Kohala Coast, HI, USA, 2015, pp. 288–301.

[29] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms with setup
costs,” Performance Evaluation, vol. 67, pp. 1123–1138, 2010.

[30] M. F. Neuts, “Markov Chains with Applications in Queueing The-
ory, Which Have a Matrix-Geometric Invariant Probability Vector,”
Advances in Applied Probability, vol. 10, no. 1, pp. 185–212, 1978.

[31] ——, “Matrix-analytic methods in queuing theory,” European Journal

of Operational Research, vol. 15, no. 1, pp. 2 – 12, 1984.

[32] M. Eisen, “Effects of Slow-Downs and Failure on Stochastic Service
Systems,” Technometrics, vol. 5, no. 3, pp. 385–392, 1963.

[33] ——, “An Approximate Method for a Queuing Process with a Ran-
domly Deteriorating Server,” Operations Research, vol. 11, no. 6, pp.
996–1000, 1963.

[34] Y.-P. Zhou and N. Gans, “A Single-Server Queue with Markov
Modulated Service Times,” Wharton School Center for Financial
Institutions, University of Pennsylvania, Tech. Rep. 99-40, Oct. 1999.

[35] S. R. Mahabhashyam and N. Gautam, “On Queues with Markov Mod-
ulated Service Rates,” Queueing Systems: Theory and Applications,
vol. 51, no. 1-2, pp. 89–113, 2005.

[36] I. Adan and J. Resing, “A class of Markov processes on a semi-
infinite strip,” Eindhoven University of Technology, Department of
Mathematics and Computing Sciences, Tech. Rep. 99-03, 1999.

[37] J. Van Leeuwaarden and E. Winands, “Quasi-birth-and-death pro-
cesses with an explicit rate matrix,” Stochastic models, vol. 22, no. 1,
pp. 77–98, 2006.

[38] B. Van Houdt and J. van Leeuwaarden, “Triangular M/G/1-Type and
Tree-Like Quasi-Birth-Death Markov Chains,” INFORMS Journal on

Computing, vol. 23, no. 1, pp. 165–171, 2011.

[39] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf,
“Exact Analysis of the M/M/k/setup Class of Markov Chains via
Recursive Renewal Reward,” in Proceedings of the 2013 ACM In-

ternational Conference on Measurement and Modeling of Computer

Systems, ser. SIGMETRICS ’13, Pittsburgh, PA, USA, 2013, pp. 153–
166.

[40] G. Casale, C. Ragusa, and P. Parpas, “A Feasibility Study of Host-
level Contention Detection by Guest Virtual Machines,” in Cloud

Computing Technology and Science (CloudCom), 2013 IEEE 5th

International Conference on, vol. 2. IEEE, 2013, pp. 152–157.

[41] A. Javadi and A. Gandhi, “DIAL: Reducing Tail Latencies for Cloud
Applications via Dynamic Interference-aware Load Balancing,” in
Proceedings of the 14th IEEE Internation Conference on Autonomic

Computing, ser. ICAC ’17, Columbus, OH, USA, 2017.

