
Energy-Aware Online Task Offloading and Resource
Allocation for Mobile Edge Computing

Yu Liu⇤, Yingling Mao⇤, Xiaojun Shang⇤, Zhenhua Liu†, Yuanyuan Yang⇤
⇤Department of Electrical and Computer Engineering
†Department of Applied Mathematics and Statistics

Stony Brook University, Stony Brook, NY 11794, USA
{yu.liu.3, yingling.mao, xiaojun.shang, zhenhua.liu, yuanyuan.yang}@stonybook.edu

Abstract—Mobile edge computing with the near-data process-

ing paradigm can support applications requiring low latency and

high computing capability, where energy cost is a significant

part of the expenditure. This paper formulates and studies the

problem of online joint task offloading and resource allocation

for latency minimization subjecting to a time average energy cost

constraint in mobile edge computing systems. The formulated

problem has four time-variant system states, i.e., data lengths,

task sizes, channel conditions, and electricity prices, which are

modeled based on real-world data. At the beginning of each

time slot, the system has to make five online decisions jointly:

base station selection, server selection for task offloading, com-

munication bandwidth allocation, computing resource allocation,

and frequency scaling. We prove the offline version of the

formulated problem is NP-hard. We design an online algorithm

with a provable approximation ratio and low computational

complexity for the proposed problem. In particular, it balances

energy cost and latency based on the drift-plus-penalty algorithm

and makes server and base station selection decisions using a

game theoretic-based algorithm. We conduct extensive real-world

data-driven simulations to evaluate the proposed algorithm.

Simulation results show that the proposed approach outperforms

popular baselines.

Index Terms—Online Task Offloading, Mobile Edge Comput-

ing, Frequency Scaling

I. INTRODUCTION

With the development of information technology, many
applications requiring low latency and high computing power
emerged, e.g., autopilot, VR gaming, and the internet of
things [1]. Mobile devices are limited in computing capa-
bility and battery sizes, while uploading the tasks on cloud
servers encounters high communication latency due to long
propagation latency and network congestion. Mobile edge
computing is one of the promising paradigms for supporting
such applications, where edge servers are close to end-users
and have relatively powerful computing capabilities.

This paper focuses on two key system performance indexes:
edge servers’ energy cost and the system’s overall latency.
The costs of edge data centers are usually higher than cloud
data centers because the cost per scale decreases as the scale
increases [2], [3]. Therefore, lowering the cost of edge data
centers is more critical than in the cloud. It is difficult to lower
the costs of equipment, server rooms, and other infrastructures.

This work was supported in part by the National Science Foundation under
grant numbers 1730291, 1717731, 2230620, 2046444, 2146909, 2106027, and
2214980.

Still, we can reduce the energy cost, which accounts for around
25 percent of the total operating cost [4]. On the other hand,
edge computing is designated to reduce round-trip latency.
Therefore, the overall latency is the other key performance
index.

CPU clock frequency scaling is widely used in edge and
data centers to balance performance and energy consump-
tion [5]–[9]. In addition, frequencies of GPUs are also tun-
able [10], [11]. This paper considers a scenario where each
edge server can choose different clock frequencies at different
time slots. We balance the energy cost and the overall system
latency by tuning edge servers’ clock frequency. In addition,
this paper does not presume a specific energy consumption
function for servers and allows edge servers to have different
energy consumption functions.

In this paper, we consider the problem of online task
offloading and resource allocation with the goal of minimizing
latency while subject to a time-averaged energy cost constraint.
At the beginning of each time slot, the system controller ob-
serves four system states: channel conditions between mobile
devices and base stations, real-time electricity price, input data
lengths, and task sizes. Then, the system controller makes five
online decisions: task offloading, base station selection, com-
puting resource allocation, communication resource allocation,
and clock frequency scaling decisions. The online decisions
and system states at each time slot jointly determine the current
energy cost and overall latency.

Despite the advantages of mobile edge computing and clock
frequency scaling, it is challenging to solve the proposed
problem. We prove that the proposed problem is NP-hard even
if the system lasts only one slot. First, there is a trade-off
between the energy cost and the overall latency. Since the
system states change over time, the sweet point of the trade-
off varies, and we must carefully balance the cost and the
overall latency at each time slot. Moreover, the system states
are not independent and identically distributed, which makes
the problem more challenging. In addition, the CPU clock
frequency scaling decisions tune the balance between cost
and latency. Even if the optimal CPU clock frequency scaling
decisions are given, minimizing the overall latency at each
time step is still NP-hard. It is because there are contradictions
between the latency of different wireless devices.

In this paper, we design an algorithm for the problem.

We use Lyapunov stochastic optimization to balance the time
average cost and the overall latency and propose a game
theoretic-based algorithm for choosing offloading and base
station selection decisions. The main contributions of the paper
are summarized as follows:
• We formulate the energy-aware online task-offloading and

resource allocation problem and show the hardness of the
problem. We do not assume that system states are indepen-
dent and identically distributed (iid) but model the system
states based on real-world data.

• We proposed a drift-plus-penalty-based online approach for
the proposed problem. In particular, the approach makes
decisions at each slot by applying a game theoretic-based
algorithm to solve an NP-hard problem. We prove that
the proposed algorithm has a constant-factor approximation
ratio.

• We conduct extensive real-world data-driven simulations to
evaluate the proposed algorithm. Results show the proposed
algorithm outperforms baselines and is time-efficient.
The remainder of this paper is organized as follows. Sec-

tion II discusses related works. Section III presents the system
model and formulates the online problem. Section IV analyzes
and simplifies the formulated problem. Section V proposes an
online algorithm for the problem. Section VI evaluates the
performance of the proposed online algorithm. Section VII
concludes this paper.

II. RELATED WORKS

Task offloading and resource management in edge environ-
ments have drawn much attention recently. In [12], Jošilo et al.

focus on a wireless and computing resource allocation problem
for computational offloading and propose a game theoretic-
based constant factor approximation algorithm. In [13], Jošilo
et al. study a task offloading and resource allocation problem
in network slices and design an approximation algorithm. In
[14], Yu et al. study a service function chain deployment and
resource management problem, where each service function
chain is an ordered sequence of network functions, and pro-
posed an algorithm similar to [12]. On the other hand, some
paper considers online systems as follows. [15]–[17] consider
mobile edge computing systems with iid systems states, while
this paper allows non-iid system states. In particular, Zhang
et al. focus on choosing caching decisions to minimize edge
computing latency and energy consumption in [15], Ying et al.

study the problem of task allocation and clock scaling for en-
ergy consumption minimization in [16], and Qi et al. consider
the task offloading and resource allocation problem in MEC-
enabled dense C-RAN for energy efficiency optimization
in [17]. In [18], Zhi et al. study an offloading problem with the
goal of maximizing edge servers’ revenue. In [19], Ye et al.

focus on a base station switching problem to lower the energy
consumption and propose a deep reinforcement learning-based
algorithm. Unlike the above online systems, this paper allows
server clock frequency scaling and does not assume iid system
states. In [20], the authors consider online optimization under
arbitrary system states: however, the competitive ratio of the

K,N, I numbers of base stations, servers, and MDs
B,S,D sets of base stations, servers, and MDs

M number of edge server clusters
Sm set of the Nm servers in cluster m
di,t input data length of Di’s task at slot t
dt dt = {d1,t, d2,t, · · · , dI,t}
fi,t job size of Di’s task at slot t
ft ft = {f1,t, f2,t, · · · , fI,t}

FL
n , FU

n lowest and highest feasible frequencies of Sn

!n,t clock frequency of Sn at slot t
⌦t ⌦t = {!1,t,!2,t, · · · ,!N,t}

gn(·) energy consumption function of Sn

�i,n suitability of running Di’s tasks on Sn

xi,k,t base station selection decision of Si at slot t
xt xt = {xi,k,t|i 2 [I], k 2 [K]}

yi,n,t task offloading decision of Si at slot t
yt yt = {yi,n,t|i 2 [I], n 2 [N]}

 A
i,n,t,

F
i,n,t bandwidth resource allocation decisions

 t t = { A
i,k,t,

F
i,k,t|i 2 [I], k 2 [K]}

�i,n,t computing resource allocation decision
�t �t = {�i,n,t|i 2 [I], n 2 [N]}

hi,k,t channel condition between Si and Bk at slot t
ht ht = {hi,k,t|i 2 [I], k 2 [K]}
pt electricity price at time slot t
↵t set of decisions, (xt,yt,�t, t,⌦t)

�t set of system states, (ft,dt,ht, pt)

Ct(⌦t, pt) energy cost at slot t
C̄ time average energy cost budget
Lt overall latency at slot t
Tt overall latency under optimal �t and t

TABLE I: Important Notations

algorithm is relatively large. There are papers considering
server clock frequency scaling. For example, [7] and [21]
assume the energy consumption function is quadratic to clock
frequency, and [8] assumes the energy consumption function
is linear to the clock frequency. Literature papers presume
an energy consumption to servers. Instead, motivated by real-
world data, this paper allows different servers to have different
energy consumption functions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the mobile edge computing (MEC)
system and formulates the energy-aware online tasking of-
floading problem. Some important notations are listed in
Table I.

A. System Model

We consider a heterogeneous mobile edge computing
(MEC) system, which operates in discrete time, i.e., t 2

{1, 2, · · · }.
The MEC system consists of base stations, edge servers, and

mobile wireless devices (MDs). Figure 1 is a diagram of the
system’s network topology. There are K base stations in the
system, and B = {B1, B2, · · · , BK} represents the collection
of the K base stations. Generally speaking, signals with higher

Macro Base
Station

Wireless
Device

Wired
Fronthaul

Wireless
Fronthaul

Micro Base
Station

Edge Server
Room

Fig. 1: Topology of the heterogeneous mobile edge computing
system. The dashed ellipses are areas covered by base stations.
Mobile devices can be covered by multiple base stations, and
base stations can connect to more than one edge server cluster.

frequencies attenuate faster than lower frequencies. Conse-
quently, the base stations use different carrier frequencies and
cover areas of various sizes. For example, base stations using
a low-band spectrum of 5G (lower than 1 GHz) can cover
a few miles, while base stations using a mid-band spectrum
(1-5 GHz) cover a range of around a hundred meters. Base
stations in B cover areas of different sizes. The system has
N edge servers, and we use S = {S1, S2, · · · , SN} to denote
the collection of all edge servers. Edge servers are located
in edge server rooms, where the traditional baseband unit
(BBU) locates. There are M server rooms, and each server
room hosts a cluster of servers. Edge server cluster m has
Nm edge servers where N1 +N2 + · · ·+NM = N . Sm ✓ S

denotes the collection of edge servers in server cluster m.
The base stations communicate with the edge servers by so-
called front-haul links [22]. The fronthaul links can be optical
fibers [23] or wireless millimeter waves [24]. We use WF

k to
denote the bandwidth of the fronthaul link corresponding with
base station Bk. Base stations using wireless fronthaul links
can connect to multiple edge server clusters. Base stations
using wired fronthaul only connect to one of the edge server
rooms because building wired connections between all base
stations and all edge server rooms is costly and increases
the complexity of the edge network. The MEC system has
I mobile devices, and D = {D1, D2, · · · , DI} denotes the
collection of all MDs. The MDs communicate with base
stations by cellular channels, and an MD may be covered by
multiple base stations. To distinguish with fronthaul links, we
refer to the links between MDs and base stations as access
links. We use WA

k to represent the access link bandwidth
corresponding with base station Bk. Since the MDs move over
time, the channel condition between Di and Bk varies. We use
hi,k,t (in terms of bps/Hz) to denote the spectrum efficiency of
the wireless channel between Di and Bk at slot t. We use ht

Fig. 2: Real-world data [25]

to denote the collection of spectrum efficiencies between MDs
and base stations at slot t, i.e., ht = {hi,k,t|i 2 [I], k 2 [K]}1.
In addition, we use hF

k (in terms of bps/Hz) to denote the
spectrum efficiency of Bk’s fronthaul link. For simplicity, we
assume hF

k is time-invariant because the locations of base
stations and edge server rooms are fixed, but the algorithm
proposed in this paper can handle the case that hF

k varies over
time.

Generally speaking, computing devices (CPU and GPU)
with a higher clock frequency can perform tasks faster with
higher energy consumption. [7], [21] demonstrate that the
energy consumption of a server is linear to the square of its
clock frequency. In [8], the energy consumption of a server
is modeled to be linear with respect to the clock frequency.
Despite the various function formulas between energy as-
sumption and clock frequency, it is generally observed that
the energy consumption is convex with respect to the clock
frequency. This paper addresses a general case where the
function formula between energy consumption and the clock
frequency is unspecified for each server. Instead, we assume
that the energy consumption is convex with respect to the
clock frequency. We assume that each edge server has a unique
energy consumption function with respect to clock frequency.
Let !n,t be the clock frequency of edge server Sn at time slot
t, and let gn(·) be the energy consumption function of Sn, i.e.,
gn(!n,t) is the energy consumption of edge server Sn at time
slot t. We use ⌦t to denote the collection of clock frequencies
of all edge servers at slot t, i.e., ⌦t = {!1,t,!2,t, · · · ,!N,t}.
In addition, we use FL

n and FU
n to denote the lowest and

highest allowed clock frequencies of server Sn, respectively,
i.e., !n,t 2 [FL

n , FU
n] for each n 2 [N].

At the beginning of each time slot t, each mobile device
Di generates a task of input data length di,t bits which
takes fi,t CPU cycles to perform. We use dt to denote
the collection of all MDs’ input data lengths at time slot
t, i.e., dt = {d1,t, d2,t, · · · , dI,t}. Similarly, we use ft =

1For any positive integer z, [z] denotes set {1, 2, · · · , z}.

{f1,t, f2,t, · · · , fI,t} to represent the collection of all MDs’ job
sizes at time slot t. Typically, fi,t is proportional to di,t, while
this paper does not presume a specific relationship between
them. Since the edge servers are heterogeneous, each server
is more suitable for conducting some specific tasks [12], [14].
There is a parameter �i,n 2 [0, 1] representing the suitability
of running Di’s task on Sn. The larger �i,n, the better. In
addition, �i,n is fixed and known. The suitability parameter
�i,n is widely used in the literature [12]–[14].

Motivated by the real-world workloads over time in Fig-
ure 2, which represents the hourly visiting numbers of an
online video from [26], it can be observed that the workload
is non-iid. There is an underlying periodic pattern in which
the workload is high during peak hours and low during off-
peak hours. Therefore, we assume fi,t = f̄i,t + efi,t, where
f̄i,t is a periodic trend with period D, and efi,t, t 2 {1, 2, · · · }
are iid random variables. For simplicity, we use f̄t to denote
the collection of {f̄1,t, f̄2,t, · · · , f̄I,t} and use eft to denote
the collection of {ef1,t, e

f
2,t, · · · , e

f
I,t}, i.e., ft = f̄t + eft .

Similarly, we assume di,t = d̄i,t + edi,t, where d̄i,t is a given
periodic trend with period D, and edi,t, t 2 {1, 2, · · · } are iid
random variables. In addition, let d̄t , {d̄1,t, d̄2,t, · · · , d̄I,t}
and edt , {ed1,t, e

d
2,t, · · · , e

d
I,t}, i.e., dt = d̄t + edt .

Renewable energy, like solar and wind energy, accounts for
around 25 percent of global electricity production [27]. How-
ever, such power is unreliable, and the electricity price of such
renewable energies is time-varying. Let pt be the electricity
price at time slot t. Motivated by real-world electricity prices
from [25], as shown in Figure 2, the electricity price is non-iid.
We assume that pt has an underlying periodical trend. That is,
pt = p̄t+ept , where p̄t is a given periodic function with period
D, and ept , t 2 {1, 2, · · · } are iid random variables.

At the beginning of each time slot, the system controller
is responsible for selecting an edge server and a base station
for each MD. Subsequently, each MD uploads its input data
to the designated base station, which then forwards the data
to the selected edge server. The edge server then performs the
MD’s task after receiving the input data.

B. Problem Formulation

In this section, we formulate the energy-aware online task
offloading problem. The problem minimizes the overall latency
while satisfying a time-averaged energy cost constraint.

1) System States:

At the beginning of each time slot t, we observe four
system states: electricity price pt, channel conditions ht, input
data lengths dt, and task sizes ft. Unlike the literature [15]–
[17] considering iid system states, we consider non-iid system
states. Motivated by real-world data, the system states can
be periodic baselines plus iid random variables. For easy
presentation, we use �t to denote the set of all system states
at time slot t, i.e., �t = (ft,dt,ht, pt).

2) Online Decisions:

At the beginning of each time slot, the system controller
has to make five decisions after observing the current system
states. The first decision is the base station selection decision

xt = {xi,k,t|i 2 [I], n 2 [N]}, where xi,k,t 2 {0, 1}
represents whether Di offloads its task via base station Bk

at slot t. In particular, xi,k,t = 1 if Di offloads its task via
Bk at slot t, and xi,k,t = 0 otherwise. Since each MD only
can choose one base station at each time slot, we have the
following constraint:

KX

k=1

xi,k,t = 1, i 2 [I], t 2 {1, 2, · · · }. (1)

Let Ni(xt) be the indexes of servers that are connected to
Di under decision xt. For example, if Di chooses Bk under
xt, n 2 Ni(xt) if and only if there is a link between Bk

and the cluster hosting server Sn. The second decision is the
task offloading decision yt = {yi,n,t|i 2 [I], n 2 [N]}, where
yi,n,t 2 {0, 1} represents whether Di performs its task on
server Sn at slot t. We have yi,n,t = 1 if Di performs its task
on server Sn at slot t, and yi,n,t = 0 otherwise. Similar to
constraint (1) for decision xt, we have a constraint for yt as
follows:

NX

n=1

yi,n,t = 1, i 2 [I], t 2 {1, 2, · · · }. (2)

Let ⌫i(yt) be the index of the server selected by Di under
decision yt, i.e., ⌫i(yt) = n if and only if yi,n,t = 1. Then,
we have a constraint as follows

⌫i(yt) 2 Ni(xt) i 2 [I], t 2 {1, 2, . . .}. (3)

The third decision is the bandwidth resource allocation de-
cision t. We use A

i,k,t 2 [0, 1] to denote the proportion
of base station Bk’s access link bandwidth WA

k allocated to
mobile device Di. F

i,k,t 2 [0, 1] represents the proportion of
base station Bk’s fronthaul bandwidth WF

k allocated to mobile
device Di. The fronthaul and access-link bandwidths of Bk

allocated to users can not exceed WF
k and WA

k , respectively.
Therefore, we have the two constraints as follows:

IX

i=1

xi,k,t
A
i,k,t 1, k 2 [K], t 2 {1, 2, · · · } (4)

IX

i=1

xi,k,t
F
i,k,t 1, k 2 [K], t 2 {1, 2, · · · }. (5)

Let A
t = { A

i,k,t|i 2 [K], i 2 [I]} and F
t = { F

i,k,t|i 2

[K], i 2 [I]} be the collections of access link and fronthaul
bandwidth resource allocation decisions, respectively. More-
over, t = A

t [
F
t is the collection of all bandwidth resource

allocation decisions at time slot t. Next, we consider the
fourth online decision, computing resource allocation decision
�t = {�i,n,t|i 2 [I], n 2 [N]}. �i,n,t 2 [0, 1] represent the
proportion of Sn’s computing capability allocated to mobile
device Di at time slot t. Similar to (4) and (5), there is a
constraint limiting the total computing resource allocated to
MDs as follows:

IX

i=1

yi,n,t�i,n,t 1, n 2 [N], t 2 {1, 2, · · · }. (6)

The fifth decision is ⌦t = (!1,t,!2,t, · · · ,!N,t), the collection
of edge servers’ clock frequencies at time slot t. In particular,
!n,t is the clock frequency of Sn at slot t. For easy presen-
tation, we use ↵t to represent the set of all decisions at time
slot t, i.e, ↵t = (xt,yt,�t, t,⌦t).

3) Time Average Objective Value and Constraint:

The system considers two key performance indexes: overall
system latency and energy cost. We consider the problem of
minimizing time average system latency under a time average
energy cost constraint.

The overall system latency experienced by all MDs con-
sists of processing latency and communication latency. The
processing latency experienced by Di at time slot t is denoted
by LP

i,t which is a function of yt,�t, ft and ⌦t as follows:

LP
i,t(yt, ft,�t,⌦t) =

NX

n=1

yi,n,t
fi,t

!n,t�i,n�i,n,t
. (7)

The total processing latency at time slot t denoted by
LP
t (yt, ft,�t,⌦t) is as follows:

LP
t (yt, ft,�t,⌦t) =

IX

i=1

LP
i,t(yt, ft,�t,⌦t). (8)

The communication latency experienced by Di at slot t is
denoted by LC

i,t. LC
i,t consists of access latency LC,A

i,t and
fronthaul latency LC,F

i,t as follows:

LC,A
i,t (xt, t,dt,ht) =

KX

k=1

xi,k,t
di,t

WA
k hi,k,t A

i,k,t

(9)

LC,F
i,t (xt, t,dt,ht) =

KX

k=1

xi,k,t
di,t

WF
k hF

k
F
i,k,t

. (10)

The total communication latency at time slot t, denoted by
LC
t (xt, t,dt,ht), is as follows:

LC
t (xt, t,dt,ht) =

IX

i=1

�
LC,A
i,t + LC,F

i,t

�
. (11)

The overall latency of the system at slot t is denoted by
Lt(↵t,�t) as follows:

Lt(↵t,�t) = LC
t (xt, t,dt,ht) + LP

t (yt, ft,�t,⌦t).

Then, we have the objective function of the system as follows:

min
↵t

lim
T!1

1

T

TX

t=1

E
⇥
Lt(↵t,�t)

⇤
. (12)

In what follows, we consider the time-averaged energy cost
constraint. The energy consumption of edge server Sn at time
slot t is a function of its clock frequency !n, i.e., gn(!n,t).
The energy cost of edge server Sn is ptgn(!n,t). The total
energy cost at time slot t, denoted by Ct, is a function of ⌦t

and pt as follows:

Ct(⌦t, pt) =
NX

n=1

ptgn(!n,t). (13)

Let C̄ be the time-averaged energy cost budget, which is fixed
and known in advance. That is, the time average energy cost
should be less than C̄. For easy presentation, we define

✓(t) , ⇥(⌦t, pt) , Ct(⌦t, pt)� C̄.

The time-averaged energy cost constraint is as follows:

lim
T!1

1

T

TX

t=1

E
⇥
⇥(⌦t, pt)

⇤
 0. (14)

4) Problem Formulation:
Next, we formally state the energy-aware online tasking

offloading and resource allocation (EOTORA) problem as
follows:

min
↵t

lim
T!1

1

T

TX

t=1

E
⇥
Lt(↵t,�t)

⇤
(EOTORA)

s.t. lim
T!1

1

T

TX

t=1

E
⇥
⇥(⌦t, pt)

⇤
 0

xi,k,t 2 {0, 1}, i 2 [I], k 2 [K], t 2 {1, 2, . . .}

yi,n,t 2 {0, 1}, i 2 [I], n 2 [N], t 2 {1, 2, . . .}

 A
i,k,t 2 [0, 1], i 2 [I], k 2 [K], t 2 {1, 2, . . .}

 F
i,k,t 2 [0, 1], i 2 [I], k 2 [K], t 2 {1, 2, . . .}

�i,n,t 2 [0, 1], i 2 [I], n 2 [N], t 2 {1, 2, . . .}

!n,t 2 [FL
n , FU

n], n 2 [N], t 2 {1, 2, . . .}

(1)� (6).

At the beginning of each time slot t, we observe the current
system state �t = (ft,dt,ht, pt) and make an online decision
↵t = (xt,yt,�t, t,⌦t).

IV. PROBLEM SIMPLIFICATION AND COMPLEXITY

In this section, we first simplify the EOTORA problem by
deriving the closed-form optimal resource allocation decisions,
i.e., �t and t. Then, we show the complexity of the simpli-
fied problem.

We have to make five decisions at each time slot t, i.e.,
xt,yt,�t, t,⌦t. When xt,yt, and ⌦t are given, the problem
is equivalent to the REsource ALlocation (REAL) problem at
each time slot as follows:

min
�t, t

LP
t (yt, ft,�t,⌦t) + LC

t (xt, t,dt,ht)

s.t. A
i,k,t 2 [0, 1] i 2 [I], k 2 [K]

 F
i,k,t 2 [0, 1] i 2 [I], k 2 [K]

�i,n,t 2 [0, 1] i 2 [I], n 2 [N]

(3)� (6).

(REAL)

If decision xt is fixed, the MDs choosing each base station Bk

at slot t are fixed, and let Ik(xt) be the set of MDs choosing
Bk at slot t under decision xt. Similarly, at slot t, the MDs
choosing each edge server Sn are fixed if yt is given, and
In(yt) represents the set of MDs choosing Sn at slot t under
decision yt. We use ⇤

t (xt) and �⇤
t (yt) to denote the optimal

 t and �t under (xt,yt), respectively. In what follows, we
show the closed-form optimal solution of REAL in Lemma 1.

Lemma 1. For any given xt,yt,⌦t, the optimal t and �t,
denoted by ⇤

t (xt) and �⇤
t (yt), are as follows:

�i,n,t =

p
fi,t/�i,nP

j2In(yt)

p
fj,t/�i,n

, n 2 [N], i 2 In(yt) (15)

 A
i,k,t =

p
di,t/hi,k,tP

j2Ik(xt)

p
dj,t/hi,k,t

, k 2 [K], i 2 Ik(xt) (16)

 F
i,k,t =

q
di,t/hF

k

P
j2Ik(xt)

q
dj,t/hF

k

, k 2 [K], i 2 Ik(xt). (17)

The main idea of the proof of Lemma 1 is as follows. First,
we show REAL is a convex problem with respect to t and
�t. Then, we list the KKT conditions of the problem. Next,
we derive (15), (16), and (17) from the KKT conditions. The
proof is similar to the proof of Lemma 1 in [14]. Since the
proof is standard, we omit the proof.

Substituting (15) into (8), the optimal processing latency at
slot t under (yt,⌦t), denoted by TP

t (yt, ft,⌦t), is as follows:

TP
t (yt, ft,⌦t) =

NX

n=1

1

!n,t

⇣ IX

i=1

yi,n,t

q
fi,t/�i,n

⌘2
. (18)

Similarly, substituting (16) and (17) into (11), the opti-
mal communication latency at slot t under xt, denoted by
TC
t (xt,dt,ht), is as follows:

TC
t (xt,dt,ht) =LC,A

t (xt,dt,�
⇤,ht) + LC,F

t (xt,dt,�
⇤,ht)

=
KX

k=1

1

WA
k

⇣ IX

i=1

xi,k,t

q
di,t/hi,k,t

⌘2

+
KX

k=1

1

WF
k

⇣ IX

i=1

xi,k,t

q
di,t/hF

k

⌘2
.

(19)
Next, we use Tt(xt,yt,⌦t,�t) to denote the optimal latency
at time T under xt, yt, and ⌦t, i.e.,

Tt(xt,yt,⌦t,�t) = TP
t (yt, ft,⌦t) + TC

t (xt,dt,ht) (20)

Note that, we use Tt, TP
t , and TA

t to denote the total latency,
processing latency, and communication latency, respectively,
under optimal resource allocation decision (⇤

t (xt),�⇤
t (yt)),

while Lt, LP
t , and LA

t are latencies under arbitrary resource
allocation decisions. Then, by eliminating resource allocation

Algorithm 1: BDMA-based DPP

Input: {WF
k ,WA

k |k 2 [K]}, {�i,n|i 2 [I], n 2 [N]},
{hF

k |k 2 [K]}, and {FL
n , FU

n |n 2 [N]}.
Output: Online decisions to the EOTORA problem,

i.e., ↵t, t 2 {1, 2, · · · }
1 Initialization: choose Q(1) and V ;
2 for t = {1, 2, · · · } do

3 Observer current system states �t;
4 Call BDMA to get (x̄t, ȳt, ⌦̄t);
5 Refer to Lemma 1 to get (�⇤

t (ȳt), ⇤
t (x̄t));

6 Perform decision (x̄t, ȳt, ⌦̄t,�⇤
t (ȳt), ⇤

t (x̄t));
7 Update queue backlog Q(t+ 1) by (21);
8 end

variables t and �t, EOTORA is equivalent to the Energy-
aware Online Task Offloading (EOTO) problem as follows:

min
xt,yt,⌦t

1

T

TX

t=1

E
⇥
Tt(xt,yt,⌦t,�t)

⇤

s.t.
1

T

TX

t=1

E
⇥
⇥t(⌦t, pt)

⇤
 0

xi,k,t 2 {0, 1}, i 2 [I], k 2 [K]

yi,n,t 2 {0, 1}, i 2 [I], n 2 [N]

(1), (2) and (3).

(EOTO)

In what follows, we show a simplified version of the EOTO

problem is NP-hard. Under the simplified version, we consider
only one slot. In addition, we assume fi,t, i 2 [I] are 0.
That is, the processing latency is 0, and we only consider
minimizing the communication latency. Moreover, we assume
there is only one server cluster, and the fronthaul links have
infinite bandwidth. Then, the simplified problem is equivalent
to the problem of minimizing latency over access links as
follows:

min
xt

KX

k=1

1

WA
k

⇣ IX

i=1

xi,k,t

q
di,t/hi,k,t

⌘2

s.t. xi,k,t 2 {0, 1}, i 2 [I], k 2 [K]
KX

k=1

xi,k,t = 1, i 2 [I].

(P1)

Theorem 1. The P1 problem, a simplified version of the

EOTO, is NP-hard.

The proof of Theorem 1 is similar to Theorem 1 in [14], so
we omit it.

V. ALGORITHM DESIGN

In this section, we design an online algorithm for EOTO and
analyze the performance of the proposed algorithm. We call
the algorithm DPP, which is short for the Drift-Plus-Penalty
scheme. In particular, DPP considers a virtual queue, and Q(t)

is the queue backlog at time slot t. In particular, the dynamic
of Q(t) is as follows:

Q(t+ 1) = max{Q(t) + ✓(t), 0}. (21)

In addition, V is a tunable parameter of the DPP algorithm.
At the beginning of each slot t, we first observe system
states �t = (ht, ft,dt, pt). We define function f(xt,yt,⌦t)
as follows:

f(xt,yt,⌦t) , V Tt(xt,yt,⌦t,�t) +Q(t)⇥(⌦t, pt).

Then, DPP solves the following problem:

min
xt,yt,⌦t

f(xt,yt,⌦t)

s.t. (1)� (3)

xi,k,t 2 {0, 1}, i 2 [I], k 2 [K]

yi,n,t 2 {0, 1}, i 2 [I], n 2 [N]

!n,t 2 [FL
n , FU

n], n 2 [N].

(P2)

Problem P2 is a mixed integer programming problem, which is
NP-hard. The proof of the NP-hardness is omitted due to space
limitations. We design an algorithm for solving P2 named
BDMA in Section V-A. The DPP algorithm using BDMA for
solving P2 is called BDMA-based DPP. The BDMA-based
DPP algorithm is formally stated in Algorithm 1.

In the remainder of this section, we first design an algorithm
for P2 in Section V-A. Next, we provide theoretical perfor-
mance guarantees for the DPP algorithm in Section V-C.

A. Algorithm Design for P2

In this section, we design an algorithm named BDMA for
P2. BDMA is short for Benders’ Decomposition Motivated
Algorithm.

P2 has two groups of decisions: binary decision (xt,yt)
and continuous decision ⌦t. BDMA considers the P2 problem
as two subproblems. The first subproblem, named P2-A, is as
follows:

min
xt,yt

Tt(xt,yt,⌦t,�t)

s.t. (1)� (3)

xi,k,t 2 {0, 1}, i 2 [I], k 2 [K]

yi,n,t 2 {0, 1}, i 2 [I], n 2 [N].

(P2-A)

P2-A fixes ⌦t and minimizes Tt(xt,yt,⌦t,�t) with respect
to binary variables xt and yt. The second subproblem,
called P2-B, fixes (x,y) and minimizes Tt(x̄t, ȳt,⌦t,�t) +
Q(t)⇥(⌦t, pt) with respect to variable ⌦t is as follows:

min
⌦t

V · Tt(x̄t, ȳt,⌦t,�t) +Q(t)⇥(⌦t, pt)

s.t. !n,t 2 [FL
n , FU

n], n 2 [N]
(P2-B)

We design an algorithm, named CGBA, for solving P2-A in
Section V-B. The P2-B problem is convex on variable ⌦t,
and we can solve the problem efficiently by convex problem
solvers like the CVX solver [28].

Then, we formally state the BDMA algorithm for solving P2
in Algorithm 2. Motivated by the Benders’ decomposition, we

Algorithm 2: BDMA(z) for P2
1 Set ⌦t = ⌦L and obj = 1;
2 for iter in {1, 2, · · · , z} do

3 Solve P2-A by CGBA to get (xt,yt);
4 Solver P2-B by CVX to get ⌦t;
5 if f(x,y,⌦t) < obj then

6 obj = f(x,y,⌦t);
7 (x̄t, ȳt, ⌦̄t) = (xt,yt,⌦t);
8 end

9 end

10 Return decision (x̄t, ȳt, ⌦̄t);

iteratively update the two sets of variables. At each iteration,
we first fix one decision and solve a subproblem to update
the second decision, then fix the second decision and update
the first one by solving the other subproblem. BDMA has an
tunable parameter z, where z is a positive integer representing
the number of iterations. We use BDMA(z) to denote BDMA

with the tunable parameter equivalent to z. We use (x̄t, ȳt, ⌦̄t)
to denote the decisions made by the BDMA algorithm.

The theoretical performance guarantee of BDMA is shown
in Theorem 3.

B. Algorithm Design for the P2-A Problem

In this section, we design a weighted game theoretic-based
algorithm for P2-A. P2-A is NP-hard, and the proof is similar
to the proof of P1. We interpret P2-A as a congestion game and
refer to the proposed algorithm as Congestion Game-Based
Algorithm (CGBA).

For the sake of convenience, we introduce some short-
formed notations as follows. Let R = {Cn|n 2 [N]} [

{BF
k , BA

k |k 2 [K]} be the set of all resources in the system,
where Cn represents the computing resource of Sn, BF

k is
the fronthaul bandwidth resource of Bk, and BA

k denotes the
access link bandwidth resource of Bk. mr is the weight of
each resource r 2 R. In particular, mr = 1/!n,t if resource
r is Cn, mr = 1/WF

k if resource r is BF
k , and mr = 1/WA

k
if resource r is BA

k . Let zi = {xi,k,t, yi,n,t|i 2 [I], k 2

[K], n 2 [N]} be the decision strategy of Di. In addition,
let z = (z1, z2, · · · , zI) be the decision profile of all MDs.
For each i 2 [I], Zi represents the set of all feasible zi. In
particular, Zi is the set zi satisfying the following constraints:

xi,k,t 2 {0, 1} k 2 [K],

yi,n,t 2 {0, 1} n 2 [N],
KX

k=1

xi,k,t = 1,
NX

n=1

yi,n,t = 1,

⌫i(yt) 2 Ni(xt).

For each zi 2 Zi, we use Ri(zi) to denote the set of
resources used by Di under zi. For example, if Di offloads
its task to server Sn via base station Bk under decision zi,
Ri(zi) = {BF

k , BA
k , Cn}. Then, for each pair of mobile

Algorithm 3: CGBA(�) for P2-A
1 Choose zi from Zi randomly for k 2 K;
2 while {9i 2 I, such that

(1� �)Ti(z) > min
ẑi2Zi

Ti(ẑi, z�i)} do

3 i := argmax
j2I

�
Tj(z)� min

ẑj2Zj

Ti(ẑj , z�i)

;

4 zi := argminz̄i2Zi T
C
i (z̄i, z�i);

5 end

6 Return decision ẑ := (z1, z2, · · · , zI);

device Di and resource r 2 R, pi,r is a parameter corre-
sponding with the pair. In particular, pi,r =

p
fi,t/!n,t if

r represents Cn, pi,r =
q
di,t/hF

k if r represents BF
k , and

pi,r =
p

di,t/hi,k,t if r represents BA
k . We use Ir(z) to

denote the set of MDs using resource r under decision z.
In addition, for each resource r 2 R, pr(z) is a function of
z, i.e., pr(z) =

P
i2Ir(z)

pi,r. Then, the latency experienced
by Di equals Ti(z) =

P
r2R(zi)

mrpi,rpr(z). Substituting the
above short-termed notations in to P2-A, P2-A is equivalent
to the problem as follows:

min
zi,i2[I]

IX

i=1

X

r2R(zi)

mrpi,rpr(z)

s.t. zi 2 Zi, i 2 [I].

(WCG)

The WCG problem can be interpreted as a weighted conges-
tion game, where the weighted congestion game is a tuple
(D, {Zi}i2[I], {Ti(·)}i2[I]). D is the set of players, i.e., the
MDs in the system. zi 2 Zi is the strategy of player i (Di),
where Zi is the set of all feasible strategies. Ti(z) is the cost
of player i under decision profile z.

We propose an algorithm named Congestion Game-Based
Algorithm (CGBA) for the WCG problem. CGBA is formally
stated in Algorithm 3.

In what follows, we show the main performance guarantee
of CGBA for the P2-A problem.

Theorem 2. For � 2 (0, 0.125), CGBA(�) can generate a

decision ẑ in at most O(I� log(P0
Pmin

)) iterations such that

T (ẑ)
2.62

1� 8�
T (z⇤), (22)

where z⇤ is the optimal solution.

P0 and Pmin are positive real values, which are the initial
and minimum values of the potential function (see [29] for
details). The proof of Theorem 2 is refer to [29].

In addition, if � = 0, the proposed CGBA algorithm can
converge to a decision ẑ such that T (ẑ) 2.62T (z⇤) in finite
iterations. We omit the proof due to space limitations. The
main idea of the proof is to show the WCG game is a potential
game, and the decision under CGBA will converge to a Nash
equilibrium.

C. Performance Analysis

In this section, we analyze the performance of the BDMA-
based DPP algorithm.

First, we assume the EOTO problem is feasible by Assump-
tion 1 as follows.

Assumption 1. Let ⇢⇤ be the optimal time average latency of
P2. There exists ✏ > 0 such that

1

T

TX

t=1

E[⇥(⌦⇤
t , pt)] �✏,

1

T

TX

t=1

E[T (x⇤
t ,y

⇤
t ,⌦

⇤
t ,�t)] = ⇢⇤.

Note that Assumption 1 is a typical assumption for online
stochastic optimization problems [30]. Then, we show that
there exists an optimal �-only policy for EOTO, where �-
only policy makes decisions only based on the current system
state �t.

Lemma 2. There exists an �-only policy and ✏ > 0 such that

1

T

TX

t=1

E[⇥(⌦�
t , pt)] �✏, (23)

1

T

TX

t=1

E[T (x�
t ,y

�
t ,⌦

�
t ,�t)] = ⇢⇤, (24)

where ↵�
t , (x�

t ,y
�
t ,⌦

�
t) is the online decision made by the

�-only policy at slot t.

The proof of Lemma 2 is omitted due to space limitations,
and a similar proof is found in [30], [31].

Next, we show the performance guarantee of the decision
↵̄t , (x̄t, ȳt, ⌦̄t) made by BDMA for P2. Let (xt,yt,⌦t) be
any feasible solution of P2. Then, we have the theorem as
follows.

Theorem 3. Let (x̄t, ȳt, ⌦̄t) be the decision made by BDMA

and (xt,yt,⌦t) be any feasible decision, we have

V · Tt(x̄t, ȳt, ⌦̄t,�t) +Q(t)⇥(⌦̄t, pt)

RV · Tt(xt,yt,⌦t,�t) +Q(t)⇥(⌦t, pt),
(25)

where R , 2.62RF /(1� 8�) and RF = max
n2[N]

{FU
n /FL

n }.

Proof. Due to space limitations, we only show the main steps
of the proof and omit some unimportant details. The objective
got by BDMA(z) decreases as z increases. We prove the
theorem by showing that (25) holds under BDMA(1). Let
⌦L = (FL

1 , FL
2 , · · · , FL

n) be the clock frequency decision
when all servers choose their lowest possible lock frequency.
First, we have

V · Tt(x̄t, ȳt, ⌦̄t,�t) +Q(t)[Ct(⌦̄t, pt)� C̄]
(a)
V · Tt(x̄t, ȳt,⌦t,�t) +Q(t)[Ct(⌦t, pt)� C̄]
(b)
V · Tt(x̄t, ȳt,⌦

L
t ,�t) +Q(t)[Ct(⌦t, pt)� C̄].

(26)

Inequality (a) of (27) holds because ⌦̄t is optimal for P2-
B. Inequality (b) of (27) holds because ⌦L

t ⌦t. Since
Theorem 2 holds, we have

Tt(x̄t, ȳt,⌦
L
t ,�t)

2.62

1� 8�
Tt(xt,yt,⌦

L
t ,�t)

2.62RF

1� 8�
Tt(xt,yt,⌦t,�t).

(27)

Substituting (27) into (26), we have (25), which proves the
theorem.

In what follows, we show the main performance guarantee
of BDMA-based DPP for EOTO.

Theorem 4. Under BDMA-based DPP, the time average

latency and the time average energy cost for EOTO are as

follows:

lim
T!1

1

T

TX

t=1

E[Tt(↵̄t,�t)] R⇢⇤ +
BD

V
(28)

lim
T!1

1

T

TX

t=1

E[⇥(⌦̄t, pt)] 0 (29)

where B is a fixed constant and D is the period of the system

states.

The proof of Theorem 4 is omitted due to space limitations.
Note that the drift-plus-penalty method in the literature typi-
cally assumes an optimal or additive approximation algorithm
for the problem needed to be solved at each time slot, i.e.,
P2. However, Theorem 4 provides a performance guarantee
when BDMA is not optimal or an additive approximation
algorithm. Details of the proof can be found in our technical
report [32]. Theorem 4 shows that BDMA-based DPP has
an approximation ratio of R when V is sufficiently large.
Moreover, we can prove that DPP is near optimal if the
algorithm for solving P2 is optimal, i.e., if ↵̂t is the optimal
decision of P2, we have

lim
T!1

1

T

TX

t=1

E[Tt(↵̂t,�t)] ⇢⇤ +
BD

V
, (30)

lim
T!1

1

T

TX

t=1

E[⇥(⌦̂t, pt)] 0.

That is, the performance of DPP depends on the algorithm for
solving P2 at the beginning of each slot.

VI. SIMULATION

In this section, we evaluate the performance of the proposed
algorithm.

A. Simulation Settings

We simulate a system with six base stations, two edge
server rooms, and more than a hundred mobile devices. In
addition, each server room hosts eight edge servers. The
electricity prices used in the simulations are real-world hourly
prices from [25]. Similar to [14], at each slot t, the task
sizes fi,t, i 2 I are randomly drawn between 50 and 200

Fig. 3: Energy Consumption Function

mega CPU cycles, and the data lengths di,t, i 2 I are
randomly drawn from 3 to 10 megabits. As for the energy
consumption function, we have the real-world power of an
i7-3770K core under clock frequencies from 1.8 GHz to
3.6 GHz (dots labeled by diamonds in Figure 3). Therefore,
we fit the real-world power data by a quadratic function
(the black curve in Figure 3) and let a, b, and c be the
coefficients of the quadratic term, linear term, and constant
of the quadratic function, respectively. Since different servers
have different energy consumption functions, for each server
Sn, we randomly generate a standard normal random variable
e and let its energy consumption function’s coefficients be
a(1+0.01e), b(1+0.1e), and c(1+0.1e), e.g., the two dashed
curves in Figure 3 are randomly generated energy consumption
functions. In addition, we assume half of the sixteen servers
have 64 cores, and others have 128. We assume the base
stations are using mid-band n77, and the access bandwidth
of each base station is randomly drawn between 50 MHz and
100 MHz. Each base station’s access link spectrum efficiency
is randomly drawn between 15 and 50 bps/Hz [33]. We assume
the base stations use wired optical fiber fronthaul links with
bandwidths randomly drawn from 0.5 to 1 GHz [34]. The
fronthaul spectrum efficiency of all base stations is set to
ten bps/Hz [35]. Each base station randomly connects to one
edge server room. Similar to [14], we randomly generate the
suitability parameters �i,n from the range between 0.5 to 1.

B. Performance and convergence of CGBA

We first evaluate the performance of CGBA for P2-A. We
compare the performance of BDMA with that of three baselines
as follows. The first baseline is MCBA proposed in [36].
MCBA represents the Markov chain Monte Carlo method-
Based Algorithm. To be more specific, MCBA is a proba-
bilistic algorithm that randomly moves between neighboring
decisions with a probability related to the objective values of
the decisions. MCBA has a probability of converging in the
optimal decision, and details can be found in [36]. The second
baseline is named ROPT, similar to the baseline used in [14].
In particular, under ROPT, each MD randomly chooses a base
station and an edge server and uses the optimal bandwidth and
computational resource allocation decision. The third baseline

Fig. 4: Performance Comparison under
� = 0 and I = {80, 90, · · · , 120}.

Fig. 5: Time Complexity Comparison
under � = 0 and I = {80, 90, · · · , 120}.

Fig. 6: Performance of CGBA for P2-A
v.s. parameter � under I = 100.

Fig. 7: Queue Backlog of BDMA-based
DPP versus time under V = {50, 100}.

Fig. 8: Average Queue Backlog and La-
tency of BDMA-based DPP versus V .

Fig. 9: Time Average Latency and En-
ergy Cost versus Energy Cost Budget.

is the optimal decision found by the commercial Gurobi
solver [37] using the branch and bound method.

We first compare the performance of CGBA(0) and that of
the three baselines under I = {80, 00, · · · , 120}. As we can
see from Figure 4, CGBA(0) outperforms ROPT and MCBA.
In addition, CGBA(0) is near optimal, achieving around 1.02
times the optimal objective value obtained by the commercial
Gurobi solver using the branch and bound method. As the
number of MDs increases, problem P2-A’s objective values
under CGBA(0), ROPT, and MCBA increase. As shown in
Figure 5, the time complexities of CGBA, MCBA, and the
commercial Gurobi solver increase as I increases. The time
complexity of ROPT is relatively low and remains the same as
I increases because ROPT randomly and parallelly generates
decisions for MDs. In addition,CGBA generates decisions
more than 500 times faster than the commercial Gurobi solver.

Next, we set the number of MDs to 100, i.e., I =
100, and evaluate the performance of CGBA(�) under � =
{0, 0.02, · · · , 0.12}. As shown in Figure 6, as parameter �
increases, the objective value under CGBA(�) decreases, and
the number of iterations to converge decreases. The simulation
results in Figure 6 can match the theoretical results in Theo-
rem 2. In the following simulations, we set � = 0 for better
performance.

C. Performance of DPP

We first evaluate the convergence of queue backlog Q(t)
of BDMA-based DPP. We set the number of MDs to be
100 and parameter z of BDMA as five. Figure 7 shows the

queue backlogs when parameter V is equivalent to 50 and
100. The queue backlogs will increase at the beginning and
converge after a while. After convergence, the queue backlog
changes as the electricity price varies. In particular, queue
backlogs will increase when the electricity price is relatively
high and decrease when the price is relatively low. The reason
is that when the electricity price is low, DPP minimizing P2
at each slot will focus more on lowering the overall latency.
Otherwise, DPP focuses more on reducing the current energy
cost. Then, we compare the queue backlog and average system
latency of DPP under V = {10, 50, 100, 150, 200, 500}. As
shown in Figure 8, the converged queue backlog increases
linearly as V increases. In addition, the average system latency
decreases as V increases, which can match Theorem 4.

Next, we compare the time average latency of BDMA-based
DPP and that of the baselines under different cost budgets.
Since the performance of DPP depends on the algorithm
for solving P2 and is near optimal if the algorithm for
solving P2 is optimal (see Equation (30)), the two baselines
are ROPT-based DPP and MCBA-based DPP. In particular,
ROPT-based DPP, MCBA-based DPP use ROPT and MCBA,
respectively, to solve P2-A to get (xt,yt). Each latency in
Figure 9 is an average of 48 slots’ latencies. As shown in
Figure 9, BDMA-based DPP outperforms the two baselines
under different cost budgets. In addition, the average energy
cost under BDMA-based DPP (the orange dashed line) is lower
than the cost budget (the gray dashed line). Simulation results
show that the time complexity of DPP is dominated by the

time complexity for solving P2-A, and the CVX solver can
solve P2-B in typically dozens of milliseconds. Therefore, the
time complexity shown in Figure 5 reflects the time complexity
for the corresponding algorithms.

VII. CONCLUSION

In this paper, we have studied the energy cost-aware on-
line joint task offloading and resource allocation problem
(EOTORA) in mobile edge computing. The goal of the problem
is to minimize the time average latency subjecting to a time
average energy cost constraint. We proved the offline version
of the proposed problem is NP-hard. We derived the closed-
form optimal resource allocation decisions given other deci-
sions. By substituting the optimal resource allocation decisions
to EOTORA, the online original problem is equivalent to
problem EOTO. We proposed an algorithm named BDMA-
based DPP for EOTO. At the beginning of each time slot,
the BDMA-based DPP algorithm uses BDMA to solve an
NP-hard mixed integer programming problem. We proved the
proposed algorithm has a constant factor approximation ratio.
Simulation results have shown the proposed BDMA-based
DPP algorithm outperforms baselines.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware application
placement in mobile edge computing: A stochastic optimization ap-
proach,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 4, pp. 909–922, 2019.

[3] Y. Liu, N. Chen, Z. Liu, and Y. Yang, “Online cloud resource provi-
sioning under cost budget for qos maximization,” in 2021 IEEE/ACM

29th International Symposium on Quality of Service (IWQOS), 2021.
[4] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a

cloud: research problems in data center networks,” pp. 68–73, 2008.
[5] S. K. Tesfatsion, E. Wadbro, and J. Tordsson, “A combined frequency

scaling and application elasticity approach for energy-efficient cloud
computing,” Sustainable Computing: Informatics and Systems, vol. 4,
no. 4, pp. 205–214, 2014.

[6] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“Toffee: Task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on

Cloud Computing, vol. 9, no. 4, pp. 1634–1644, 2019.
[7] Y. Luo, L. Pu, and C.-H. Liu, “Cpu frequency scaling optimization

in sustainable edge computing,” IEEE Transactions on Sustainable

Computing, 2022.
[8] Y. Yang, W. Hu, X. Chen, and G. Cao, “Energy-aware cpu frequency

scaling for mobile video streaming,” IEEE Transactions on Mobile

Computing, vol. 18, no. 11, pp. 2536–2548, 2019.
[9] W. Tang, Y. Ke, S. Fu, H. Jiang, J. Wu, Q. Peng, and F. Gao, “Demeter:

Qos-aware cpu scheduling to reduce power consumption of multiple
black-box workloads,” in Proceedings of the 13th Symposium on Cloud

Computing, ser. SoCC ’22, New York, NY, USA, 2022, p. 31–46.
[10] Q. Zhu, B. Wu, X. Shen, L. Shen, and Z. Wang, “Co-run scheduling

with power cap on integrated cpu-gpu systems,” in IEEE International

Parallel and Distributed Processing Symposium, 2017, pp. 967–977.
[11] G. Chen and X. Wang, “Performance optimization of machine learn-

ing inference under latency and server power constraints,” in 2022

IEEE 42nd International Conference on Distributed Computing Systems

(ICDCS), 2022, pp. 325–335.
[12] S. Jošilo and G. Dán, “Wireless and computing resource allocation for

selfish computation offloading in edge computing,” in IEEE INFOCOM

2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 2467–2475.

[13] S. Jošilo and G. Dán, “Joint wireless and edge computing resource man-
agement with dynamic network slice selection,” IEEE/ACM Transactions

on Networking, pp. 1–14, 2022.

[14] Y. Liu, X. Shang, and Y. Yang, “Joint sfc deployment and resource
management in heterogeneous edge for latency minimization,” IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2131–2143, 2021.

[15] N. Zhang, S. Guo, Y. Dong, and D. Liu, “Joint task offloading and data
caching in mobile edge computing networks,” Computer Networks, vol.
182, p. 107446, 2020.

[16] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“Toffee: Task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on

Cloud Computing, vol. 9, no. 4, pp. 1634–1644, 2021.
[17] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic

task offloading and resource allocation for mobile-edge computing in
dense cloud ran,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3282–3299, 2020.

[18] Z. Ma, S. Zhang, Z. Chen, T. Han, Z. Qian, M. Xiao, N. Chen, J. Wu, and
S. Lu, “Towards revenue-driven multi-user online task offloading in edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 5, pp. 1185–1198, 2021.

[19] J. Ye and Y.-J. A. Zhang, “Drag: Deep reinforcement learning based
base station activation in heterogeneous networks,” IEEE Transactions

on Mobile Computing, vol. 19, no. 9, pp. 2076–2087, 2020.
[20] Y. Liu, J. Comden, Z. Liu, and Y. Yang, “Online resource provisioning

for wireless data collection,” ACM Trans. Sen. Netw., vol. 18, no. 1,
oct 2021. [Online]. Available: https://doi.org/10.1145/3470648

[21] K. D. Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation
on mobile devices,” in International Conference on Parallel Processing

and Applied Mathematics. Springer, 2013, pp. 793–803.
[22] G. Kalfas, C. Vagionas, A. Antonopoulos, E. Kartsakli, A. Mesodi-

akaki, S. Papaioannou, P. Maniotis, J. S. Vardakas, C. Verikoukis, and
N. Pleros, “Next generation fiber-wireless fronthaul for 5g mmwave
networks,” IEEE Communications Magazine, vol. 57, no. 3, pp. 138–
144, 2019.

[23] M.-Y. Huang, Y.-W. Chen, P.-C. Peng, H. Wang, and G.-K. Chang,
“A full field-of-view self-steering beamformer for 5g mm-wave fiber-
wireless mobile fronthaul,” Journal of Lightwave Technology, vol. 38,
no. 6, pp. 1221–1229, 2020.

[24] U. Demirhan and A. Alkhateeb, “Enabling cell-free massive mimo
systems with wireless millimeter wave fronthaul,” IEEE Transactions

on Wireless Communications, 2022.
[25] “Nyiso.” [Online]. Available: https://www.nyiso.com/
[26] L. K. Sullivan, “Shoes the full version retrieved on january 1, 2023,”

Website, 2007, https://www.youtube.com/watch?v=wCF3ywukQYA/.
[27] T. Ahmad and D. Zhang, “A critical review of comparative global

historical energy consumption and future demand: The story told so
far,” Energy Reports, vol. 6, pp. 1973–1991, 2020.

[28] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming, version 2.1,” 2014.

[29] Y. Liu, Y. Mao, Z. Liu, F. Ye, and Y. Yang, “Joint task offloading
and resource allocation in heterogeneous edge environments,” in IEEE

Conference on Computer Communications (INFOCOM). IEEE, 2023.
[30] M. J. Neely, “Stochastic network optimization with application to

communication and queueing systems,” Synthesis Lectures on Commu-

nication Networks, vol. 3, no. 1, pp. 1–211, 2010.
[31] Y. Liu, Z. Liu, and Y. Yang, “Non-stationary stochastic network opti-

mization with imperfect estimations,” in 2019 IEEE 39th International

Conference on Distributed Computing Systems (ICDCS), 2019.
[32] Y. Liu, Y. Mao, X. Shang, Z. Liu, and Y. Yang, “Technical report for

“energy-aware online task offloading and resource allocation for mobile
edge computing”,” [Online]. Available: https://drive.google.com/drive/
folders/1C8yttMxoOop7VrhcgmU9brIj1HTlATbT?usp=share link.

[33] Y. Huo, X. Dong, and W. Xu, “5g cellular user equipment: From theory
to practical hardware design,” IEEE Access, vol. 5, 2017.

[34] J. Bohata, M. Komanec, J. Spáčil, Z. Ghassemlooy, S. Zvánovec, and
R. Slavı́k, “24-26 ghz radio-over-fiber and free-space optics for fifth-
generation systems,” Opt. Lett., vol. 43, no. 5, pp. 1035–1038, 2018.

[35] G. P. Agrawal, “Optical communication: its history and recent progress,”
Optics in our time, pp. 177–199, 2016.

[36] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in IEEE Confer-

ence on Computer Communications (INFOCOM). IEEE, 2020.
[37] B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41,

no. 2, pp. 159–178, 2007.

