
Joint Task Offloading and Resource Allocation in
Heterogeneous Edge Environments

Yu Liu⇤, Yingling Mao⇤, Zhenhua Liu†, Fan Ye⇤, and Yuanyuan Yang⇤
⇤Department of Electrical and Computer Engineering, Stony Brook University, USA
†Department of Applied Mathematics and Statistics, Stony Brook University, USA

Abstract—Mobile edge computing is becoming one of the

ubiquitous computing paradigms to support applications requir-

ing low latency and high computing capability. FPGA-based

reconfigurable accelerators have high energy efficiency and low

latency compared to general-purpose servers. Therefore, it is

natural to incorporate reconfigurable accelerators in mobile

edge computing systems. This paper formulates and studies the

problem of joint task offloading, access point selection, and re-

source allocation in heterogeneous edge environments for latency

minimization. Due to the heterogeneity in edge computing devices

and the coupling between offloading, access point selection, and

resource allocation decisions, it is challenging to optimize over

them simultaneously. We decomposed the proposed problem into

two disjoint subproblems and developed algorithms for them.

The first subproblem is to jointly determine offloading and

computing resource allocation decisions and is NP-hard, where

we developed an algorithm based on semidefinite relaxation.

The second subproblem is to jointly determine access point

selection and communication resource allocation decisions, where

we proposed an algorithm with a provable approximation ratio of

2.62. We conducted extensive numerical simulations to evaluate

the proposed algorithms. Results highlighted that the proposed

algorithms outperformed baselines and were near-optimal over

a wide range of settings.

Index Terms—Edge Computing, Reconfigurable Accelerators

I. INTRODUCTION

Recently, the development of information technology has
given birth to a large number of novel applications requiring
extra-low response time, e.g., augmented reality, virtual reality,
the internet of things, and autonomous vehicles [1]. Due to
the computing capability and energy consumption limitations,
implementing such applications on wireless devices can not
meet the low latency requirement of such applications. On
the other hand, nor is cloud computing able to meet the
low latency requirement due to network congestion and long
physical distances. Since edge servers are located in close
proximity to end-users and have powerful enough computing
capability, offloading tasks of wireless devices to edge servers
is becoming a ubiquitous computing paradigm for such appli-
cations.

With the advancement of Field Programmable Gate Arrays
(FPGAs), FPGA-based reconfigurable accelerators have been
widely adopted for various tasks [2]. Running specific jobs
on FPGA has high efficiency in both computing time and
energy consumption. For example, an AlexNet accelerator

This work was supported in part by the National Science Foundation under
grant numbers CCF-1730291, CCF-2046444, CNS-2146909, CNS-2106027,
and CNS-2214980.

with 16-bit fixed point implemented on Xilinx Virtex-7 is 62⇥
faster and uses 22⇥ less energy compared to ARM Cortex
A15 [3], [4]. FPGAs are frequently attached to a CPU in
traditional computing systems, acting as powerful auxiliaries.
Recently, a more advanced structure [5], [6] has been proposed
where FPGAs can connect to networks as standalone com-
puting resources following existing infrastructure as a service
(IaaS) mechanisms. The availability of FPGAs as independent
resources will enable high scalability, flexibility, and easy
maintenance.

Existing task offloading works at the edge mainly focus
on homogeneous systems that contain either general-purpose
processors or FPGAs. In contrast, we consider a heterogeneous
edge computing system where both FPGAs and general-
purpose servers exist. Wireless devices (WDs) communicate
with computing devices via access points (APs). There are four
categories of decisions in such systems, namely offloading,
access point selection, computing resource management, and
communication resource management decisions. The goal is
to minimize the average latency of all wireless devices.

Despite the advantages of edge computing and incorporating
standalone FPGAs, it is challenging to choose offloading, AP
selection, computing resource management, and communica-
tion resource management decisions jointly. First, computing
devices in the system are heterogeneous and thus suitable
for different jobs. For example, some jobs can be acceler-
ated significantly on FPGAs, while others have less latency
reduction on FPGAs. The amounts of resources required for
performing tasks of different WDs on FPGAs are different.
Therefore, to efficiently use limited FPGAs, offloading de-
cisions must be made carefully, so tasks are offloaded to
suitable computing devices. Second, the computing resources
of general-purpose servers are limited and must be shared
among multiple WDs [7]. The resource allocation among WDs
must be balanced to ensure that the overall latency is as low as
possible. Third, WDs can communicate with edge computing
devices via different APs, and the channel conditions between
WDs and APs can vary greatly. Consequently, we need to
coordinate the AP selections for WDs to minimize their
collective latencies. Lastly, the bandwidth of access points is
limited, and the bandwidths have to be allocated to WDs in
a collective optimal manner. Existing methods can not deal
with the above challenges collectively, and this is the first
work considering the joint tasking offloading and resource
management problem in heterogeneous edge environments.

Our main contributions are summarized as follows.
• We formulate the joint task offloading, AP selection, and

resource management problem (JOAM) in heterogeneous
edge environments, which we prove is NP-hard. JOAM can
be divided into two disjoint NP-hard problems, namely Joint
task Offloading and computing resource Management prob-
lem (JOM) for computing latency minimization and Joint
AP selection and communication resource Management
problem (JAM) for communication latency minimization,
and see Section III-E for details.

• For the first subproblem (JOM) minimizing computing la-
tency, we show that there is no polynomial-time approx-
imation algorithm. Therefore, we develop a semidefinite
relaxation-based algorithm to make offloading decisions
and derive the closed-form optimal computing resource
management decisions.

• For the second subproblem (JAM) minimizing communica-
tion latency, we design a game-theoretic algorithm to choose
APs and allocate communication resources. We prove the
approximation ratio of the proposed algorithm is 2.62. In
addition, we show that there exists a trade-off between the
time complexity and the approximation ratio of the proposed
algorithm.

• We evaluate the algorithms by extensive simulations. The
results highlight that the proposed algorithms outperform
popular baselines, e.g., Markov chain Monte Carlo meth-
ods [8], and are near-optimal (1.02⇥ and 1.05⇥ the optimal
latencies).
The remainder of this paper is organized as follows. Sec-

tion II discusses related works. Section III presents the prob-
lem formulation. Sections IV and V propose algorithms for
JOM and JAM, respectively. Section VI shows the perfor-
mance evaluation of our algorithms. Section VII concludes
this paper.

II. RELATED WORKS

A large number of works of job offloading with various
purposes and settings in edge computing systems are well-
studied, e.g., [7], [9]–[13]. In particular, [7], [9], [10] and
[14] focus on minimizing the latency of jobs, [12] and [15]
consider job offloading problems with the goal of optimizing
the computation energy efficiency, and [11] formulates a job
offloading problem that considers minimizing a combination
of computing latency and energy consumption. In [13], Ali et
al. consider the problem of minimizing energy consumption
under latency constraints in a mobile cloud computing system.
Different methodologies have been exploited for choosing
decision variables. Game theoretic-based algorithms are used
in [7], [9]. [11] proposes a reinforcement learning-based
algorithm for choosing decision variables. [10] applies Lya-
punov optimization to the proposed problem. [12] proposes
an iterative and gradient descent method for minimizing its
objective value. Some works assume the computing resource
assigned to jobs are adjustable [7], [9], [11], [12], while others
fix the amount of resources required by jobs [10]. In this
paper, we consider a more general case where the amount

of resources for jobs on general-purpose servers is adjustable
and that for jobs on FPGAs is fixed.

[7], [9] are two papers that consider offloading jobs and
resource allocating, where the amount of computing resources
allocated to wireless devices is adjustable. In [7], Jošilo et
al. consider the problem of allocating wireless and computing
resources to wireless devices in an edge computing system
for latency minimization, and an algorithm with a provable
approximation ratio is proposed. In [9], Jošilo et al. extend the
model in [7] by enabling network slicing. The amount of com-
puting resource allocated to wireless devices is adjustable in
both [7] and [9], while standalone FPGAs are included in this
paper, and we can not change the amounts of FPGA resources
assigned to FPGAs to tune the processing latency (detailed
reasons can be found in Section III-D). The computing laten-
cies of general-purpose servers and FPGAs follow different
natures, leading to the difficulty of the latency minimization
problem, and the previous methods in the literature can not
solve the problem considered in this paper. The algorithm
proposed in Section V can solve the problems in [7], [9],
where our algorithm converges in polynomial steps and their
algorithms may need exponential steps.

III. SYSTEM MODEL

We consider the problem of joint task offloading and re-
source allocation in heterogeneous edge environments with
the goal of minimizing the system latency. Some important
notations are shown in Table I.

A. Edge Task Offloading System
a) System Components: We consider an edge system

consisting of wireless edge devices (WDs), access points
(APs), and edge computing devices. There are I WDs in the
system, and I = [I] , {1, 2, · · · , I} denotes the set of WDs.
There are K APs in the system, and K = [K] , {1, 2, · · · ,K}

represents the set of APs. For each AP k 2 K, it has an
uplink bandwidth of Bk bits/s and a downlink bandwidth
of Bk bits/s. There are two types of edge computing de-
vices, namely general-purpose servers and FPGAs. We use
N = [N] , {1, 2, · · · , N} to denote the set of servers where
N is the number of servers. Similarly, M = [M] represents
the set of FPGAs where M is the number of FPGAs. We
use Fn to denote the computing capability of server n, e.g.,
numbers of floating-point operations per second (FLOPs). For
each m 2 M, Am = {Am,1, Am,2, · · · , Am,L} is the vector
representing the amounts of L different resources of FPGA
m, i.e., the number of configurable logic blocks (CLBs), Flip-
Flops, DSPs, BRAMs and so on [16]. L = {1, 2, · · · , L}
denotes the set the L types of resources. Multiple applications
can share the resources of an FPGA board simultaneously [17],
[18].

b) Network Topology: WDs can communicate with edge
computing devices through APs. Each AP k 2 K has a
coverage area. A WD can be covered by more than one AP.
We use Ki to denote the set of APs that cover the location of
WD i where Ki ✓ K. APs communicate with edge computing

edge
Connections

AP 1 AP 2 AP 3

WD 1 WD 2 WD 3 WD 4 WD 5 WD 6

server 3

server 2server 1

FPGA 1

FPGA 2

WD 7

Fig. 1: Example of an edge computing system with N =
3,M = 2,K = 3 and I = 7. WD 3 uses AP 1 and AP 2
for uploading and downloading data, respectively.
devices by wired links [19], e.g., cellular base stations using
fiber optic cables with a speed of up to 200 Gbps and wireless
routers using twisted pair cables with a speed of up to 10 Gbps.
Therefore, compared with the wireless links between WDs and
APs, the latency of the wired links between APs and edge
computing devices are negligible, which is also assumed by
the literature [7], [9]. The edge computing devices are typically
in an edger server room where the traditional baseband unit
is, and each AP connects to the edge server room by optical
fiber fronthaul link. Figure 1 shows an example of the network
topology.

c) Tasks: WDs generate computing tasks periodically
under a given frequency [20]. Each task of WD i has an input
data size of ci bits and an output data size of ci bits. Each
WD i offloads its tasks to either a server or an FPGA. If
WD i offloads its tasks on a server, it takes fi FLOPs to
complete a task. When WD i offloads its tasks on FPGA m,
denote by ai,m = {ai,m,1, · · · , ai,m,L} the required resources
to implement the function of WD i. The time to complete a
task of the function is denoted by ti,m. ti,m and ai,m,l can
be different across FPGA types m. Specifically, experiments
in [21] showed that function completion time and its resource
consumption vary across families of Xilinx, Altera, Actel, and
Quick Logic FPGAs.

B. AP Selection and Wireless Resource Management
a) AP selection Decisions: Each WD i 2 I has to choose

an AP ki 2 Ki for uploading input data. Similarly, WD i 2 I

has to choose an ki 2 Ki for WD i for downloading output
data. We use variable zi,k 2 {0, 1} and variable zi,k 2 {0, 1}
to represent weather WD i choose AP k as its uploading AP
and downloading AP, respectively. Let zi = {zi,k, zi,k}k2K be
the collection of AP selection decisions of WD i. There are
two constraints for the AP selection decisions of each WD i

as follows:
X

k2Ki

zi,k = 1 and
X

k2Ki

zi,k = 1 for i 2 I. (1)

In addition, z = {zi,k, zi,k}i2I,k2K is the set of all AP
selection decisions. For each AP k 2 K, let Ok(z) (Ok(z))

I,N ,M, and K sets of WDs, servers, FPGAs, and APs

x = {xi,n|i 2 I, n 2 N} offloading decisions related to servers

y = {yi,m|i 2 I,m 2 M} offloading decisions related to FPGAs

↵ = {↵i,n|i 2 I, n 2 N} computing resource decisions

� = {�i,n|i 2 I, n 2 N} suitability between WDs and servers

z = {zi,k, zi,k|i 2 I, k 2 K} AP selection decisions

� = {�i,k,�i,k
|i 2 I, k 2 K} communication resource decisions

� = {�i,k|i 2 I, k 2 K} wireless channel condition

TP (x,y,↵) =
P

TP
i (x,y,↵) total processing latency

TC(z,�) =
P

TC
i (z,�) total communication latency

TABLE I: Important Notations
be the collection of WDs using AP k as their uploading
(downloading, respectively) AP. WDs in Ok(z) (Ok(d)) share
the uplink (downlink, respectively) bandwidth of AP k.

b) Wireless Channel Conditions: For each i 2 I and k 2

K, there is a bandwidth utilization, denoted by �i,k 2 [0, 1],
associated with WD i and AP k, which reflects the condition
of the wireless condition between WD i and AP k. �i,k is
given in advance, which is affected by the distance between
WD i and AP k, the noise power of the channel between WD
i and AP k, and so on. In particular, we set �i,k = 0 if WD i

is not covered by AP k, i.e., �i,k = 0 if k /2 Ki.
c) Wireless Bandwidth Resource Management: If WD

i 2 Ok(z), there is a variable, �i,k, representing the proportion
of the uplink bandwidth of AP k allocated to WD i. Similarly,
if WD i 2 Ok(z), �

i,k
represents the proportion of the

downlink bandwidth of AP k allocated to WD i. Since the
total bandwidth allocated to WDs can not exceed the total
bandwidth of AP k, we have two constraints as follows:

X

i2I

zi,k�i,k =
X

i2Ok(z)

�i,k  1

X

i2I

zi,k�i,k
=

X

i2Ok(z)

�
i,k

 1.
(2)

For the sake of simplicity, we use � to denote the collection of
all communication resource management variables, i.e., � =
{�i,k,�i,k

|i 2 I, k 2 K}.
We distinguish the uplink and downlink bandwidth to handle

the case that uplink and downlink use different frequency
bands, e.g., frequency division multiplexing (FDD) proto-
cols [22]. Our algorithm can handle the case that there is
no distinction between uplink and downlink bandwidth, i.e,
each AP k has only one bandwidth constraint

P
i2Ok(z)

�i,k+P
i2Ok(z)

�
i,k

 1, which is a degenerated case.

C. Task Offloading and Computing Resource Management
a) Offloading to Server: For each WD i 2 I and server

n 2 N , there is a variable xi,n 2 {0, 1}. In particular, xi,n = 1
if WD i offloads its tasks on server i, and xi,n = 0 otherwise.
xn = (x1,n;x2,n; · · · ;xI,n) denotes the collection of xi,n

related to server n. In addition, x denotes the collection of
xi,n for i 2 I, n 2 N . On(x) is the set of WDs that place
their tasks on server n, i.e., xi,n = 1 if i 2 On(x). If WD
i offloads its tasks on server n, i.e., i 2 On(x), we use ↵i,n

to denote the proportion of computing capability of server n

allocated to WD i. Note that the server can be not only a CPU
but also a GPU because the MPS scheme allows different jobs
running on different address spaces of a GPU [23]. There is
a constraint limiting that the amount of computing capability
allocated to WDs in On(x) can not exceed the total computing
capability of server n as follows:

X

i2I

xi,n↵i,n ,
X

i2On(x)

↵i,n  1. (3)

For the sake of simplicity, we use ↵ = {↵i,n|i 2 I, n 2 N} to
denote the collection of all computing resource management
variables.

b) Suitability Between servers and Tasks: Since different
servers may be equipped with different amounts of CPUs,
GPUs, etc., some servers are more suitable for running some
types of tasks. For each WD i and server n, there is a
suitability �i,n 2 [0, 1] [14]. �i,n 2 [0, 1] depicts how well
a server n is fitting for running tasks of WD i. The larger
�i,n, the better the suitability of offloading tasks of WD i to
server n.

c) Offloading to Field Programmable Gate Arrays: For
each WD i 2 I and FPGA m 2 M, there is a decision variable
yi,m 2 {0, 1}. In particular, yi,m = 1 if WD i places its tasks
on FPGA m, and yi,m = 0 otherwise. y is the collection of
yi,m for i 2 I,m 2 M. Moreover, Om(y) represents the set
of WDs that place their tasks on FPGA m, i.e., i 2 Om(y)
if yi,m = 1. There is a constraint limiting the total amounts
of resources required by WDs in Om(y) can not exceed the
resource amounts of FPGA m as follows:
X

i2I

yi,mai,m,l ,
X

i2Om(y)

ai,m,l  Am,l for m 2 M, l 2 L.

(4)
d) Constraint of Offloading Decision: The collection of

offloading decisions is (x,y). Since each WD i offloads its
tasks on either a server n 2 N or an FPGA m 2 M, we have
the following constraint regarding (x,y):

X

n2N

xi,n +
X

m2M

yi,m = 1 for i 2 I. (5)

D. Goal of the System
The goal of the system is to minimize the summation

of latency of all WDs. The latency of each WD i consists
two parts, namely processing latency T

P
i and communication

latency T
C
i .

a) Processing Latency: If WD i places its task on server
n, the average processing latency can be expressed as a
function of the amount of computing capability allocated to
WD i [24], i.e.,

T
P
i = xi,n · fi/

�
Fn�i,n↵i,n

�
(6)

where �i,n is a fixed parameter reflecting the suitability of
running tasks of WD i on server n. For example, �i,n is
different in two cases where the server is a CPU and a GPU.
We can tune the above latency by varying ↵i,n [7], [23]. On

the other hand, if WD i offloads its tasks on FPGA m, the
processing latency of WD i is ti,m, i.e.,

T
P
i = yi,mti,m. (7)

Different from the latencies of tasks on servers, latencies of
tasks on FPGAs can not be decreased by increasing the number
of configurable logic blocks for the following reasons. First,
the functions running on FPGAs are described by hardware
description language in advance. Once the hardware descrip-
tion code is given and an FPGA is specified, the resource
consumption and the latency are also fixed. Second, it is
wasteful and time-consuming to develop different versions of
FPGA implementation. Last and most importantly, varying
the implementation (reprogramming FPGA) takes time, e.g.,
hundreds of ms up to tens of seconds, which is fatal to
applications requiring extra-low latency.

From (6) and (7), the processing latency is a function of
(x,y,↵), and we use T

P (x,y,↵) to denote the summation
of processing latency of all WDs, i.e.,

T
P (x,y,↵) =

X

i2I

� X

n2N

xi,nfi

Fn�i,n↵i,n
+

X

m2M

yi,mti,m

�
. (8)

b) Communication Latency: Since we focus on edge
computing systems, the WDs and APs are in close vicinity;
therefore, the propagation delay is negligible, and we only
need to consider the transmission delay. The transmission
latency of WD i consists of input data uploading latency and
output data downloading latency. If AP k is the uploading
AP of WD i, the uploading transmission delay of WD i is
denoted by T

C
i , i.e., T

C
i = ci/(�i,k · Bk · �i,k) if zi,k = 1.

Similarly, if AP k is the downloading AP of WD i, the
downloading transmission delay of WD i is denoted by T

C
i ,

i.e., TC
i = ci/(�i,k · Bk · �

i,k
) if zi,k = 1. Let T

C
i be the

average communication latency of WD i, i.e., TC
i = T

C
i +T

C
i .

In addition, the summation of communication latencies of all
WDs is a function of z,� as follows:

T
C(y,�) =

X

i2I

T
C
i (y,�) =

X

i2I

�
T

C
i + T

C
i

�
. (9)

E. Problem Formulation
In this subsection, we formally state the problem we formu-

lated above as an optimization problem, and we refer to the
problem as JOAM which is short for Joint job Offloading, AP
selection, and resource Management. JOAM is as follows:

min
x,y,z,↵,�

T
P (x,y,↵) + T

C(y,�) (JOAM)

s.t. (1)� (5)

xi,n 2 {0, 1} for i 2 I and n 2 N (10)
yi,m 2 {0, 1} for i 2 I and m 2 M (11)
↵i,n 2 [0, 1] for i 2 On(x) and n 2 N (12)
zi,k, zi,k 2 {0, 1} for i 2 I and k 2 K (13)
�i,k 2 [0, 1] for i 2 Ok(z) and k 2 K (14)
�
i,k

2 [0, 1] for i 2 Ok(z) and k 2 K. (15)

The decision variables of JOAM can be partitioned into two
sets, namely (x,y,↵) and (z,�). There is no coupling between
(x,y,↵) and (z,�) in the constraints. In addition, communica-
tion latency T

C is merely determined by (z,�), and processing
latency T

P is merely determined by (x,y,↵). Therefore,
JOAM can be divided into two disjoint subproblems, namely
the Joint task Offloading and computing resource Management
problem (JOM) of minimizing T

P over (x,y,↵) and the AP
selection and communication resource Management problem
(JAM) of minimizing T

C over variables (z,�). The two
disjoint subproblems are as follows:

min
x,y,↵

TP (x,y,↵) (JOM)

s.t. (3)� (5), (12)� (14)

min
z,�

TC(z,�) (JAM)

s.t. (1)� (2), (15)� (17)

In what follows, we show the NP-hardness of JOAM. Actually,
both JOM and JAM are NP-hard.

Theorem 1. JOAM is NP-hard.

Proof. JOM is a special version of JOAM. To be more
specific, JOM is equivalent to JOAM if there is only one AP
covering all WDs and having infinite uplink and downlink
bandwidth. JOAM is NP-hard because JOM, a special version
of JOM, is NP-hard. The NP-hardness of JOM is shown in
Theorem 2.

IV. ALGORITHM DESIGN FOR TASK OFFLOADING AND
COMPUTING RESOURCE MANAGEMENT

In this section, we focus on the first subproblem of JOAM,
i.e., JOM. We first show the hardness of JOM. Then, We
design an algorithm for JOM.

Theorem 2. JOM is NP-hard, and no polynomial-time approx-
imation algorithm is possible unless there are some additional
assumptions.

The main idea of the proof is to show a special version of
JOM is equivalent to the Generalized Assignment Problem
(GAP) (Chapter 48 of [25]). Under the special version of
JOM, there is no general-purpose server and only one type
of resource constraint, i.e., N = 0 and m = 1. Detailed proof
of Theorem 2 is omitted due to space limitations.

A. Computing Resource Management Under Given Offloading
Decisions

We then consider the problem of finding the optimal
computing resource management decision ↵ under any given
offloading decision (x,y). For WDs placing their tasks on gate
arrays, their latencies are fixed. Therefore, if (x,y) is given,
JOM is equivalent to minimizing the summation of T

P
i for

i 2 [
n2N

On(x) over ↵ as follows:

min
↵

X

n2N

X

i2On(x)

fi/
�
Fn�i,n↵i,n

�

s.t. ↵i,n 2 [0, 1] for n 2 N , i 2 On(x)X

i2On(x)

↵i,n  1 for n 2 N .

(16)

We use ↵
⇤(x) = {↵

⇤

i,n

��n 2 N , i 2 On(x)} to denote the
optimal solution of (16) under offloading decision x. The
optimal computing resource management decision ↵

⇤(x) is
shown in Lemma 1.

Lemma 1. For any given x, ↵⇤(x) is as follows:

↵⇤

i,n =

p
fi/�i,nP

j2On(x)

p
fj/�i,n

for n 2 N , i 2 On(x). (17)

The proof of Lemma 1 is omitted due to space limitations.
The main idea of the proof is to exploit the KKT conditions.
Substituting ↵

⇤ into (8) and changing the order in the double
sum, the optimal processing latency under offloading decision
(x,y) is equal to

T
P =

X

n2N

X

i2I

X

j2I

xi,nxj,n

Fn

s
fifj

�i,n�j,n
+
X

i2I

X

m2M

yi,mti,m.

That is, by substituting ↵
⇤ into JOM, JOM is equivalent to P1

as follows:

min
x,y

X

n2N

1
Fn

X

i2I

X

j2I

xi,nxj,n

s
fifj

�i,n�j,n
+

X

i2I

X

m2M

yi,mti,m

s.t.
X

i2Om(y)

ai,m,l  Am,l for m 2 M, l 2 L

X

n2N

xi,n +
X

m2M

yi,m = 1 for i 2 I

xi,n, yi,m 2 {0, 1} for i 2 I, n 2 N ,m 2 M.
(P1)

We use (x⇤
,y⇤) to denote the optimal solution of P1. Accord-

ingly,
�
x⇤

,y⇤
,↵

⇤(x⇤)
�

is the optimal solution of JOM. Since
we have the optimal solution ↵

⇤(x) under any given (x,y),
we then focus on choosing (x,y), i.e., solving P1.

B. Algorithm Design for P1
Although we eliminate decision ↵, P1 is still NP-hard and

there is no polynomial-time approximation algorithm for it.
The proof is similar to that of Theorem 2, and we omit the
proof due to space limitations. Semidefinite relaxation to P1
is a practical approach for finding a feasible solution nearing
the optimal solution in polynomial time. Next, we focus
on developing a semidefinite programming (SDP) relaxation
approach for P1.

First, we rewrite P1 in the standard binary quadratic pro-
gramming (BQP) form. Let u be the column vector uni-
fying all variables of P1, i.e., x and y. In particular, we
have u = (x1;x2; · · · ;xN ;y1;y2; · · · ;yM) where xn =
(x1,n; · · · ;xI,n) and yn = (y1,m; y2,m; · · · ; yI,m). J = (M+
N)I is the number of binary variables of P1. By introducing
a new variable U = u · u

T , we can reformulate P1 as:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i 2 I

dTm,lu  Am,l for m 2 M, l 2 L

U = u · uT .

(18)

P is a J ⇥ J matrix corresponding to the quadratic terms in
the objective function of P1. q, hi, dm,l are column vectors of

Algorithm 1: SDPR
Input: Fn, n 2 N , fi, i 2 I, Am,m 2 M, ai, i 2 I,

ti, i 2 I

Parameter: IterNum

Output: A feasible solution to P1: (xbest
,ybest)

1 Calculate P, q, ci for i 2 I, and dm for m 2 M;
2 Solve SDP (19) to get u⇤ and U

⇤;
3 Initialize (xbest

,ybest) = round(u⇤);
4 Initialize L

best = T
P (xbest

,ybest
,↵

⇤(xbest
,ybest));

5 Set µ = u
⇤, ⌃ = U

⇤
� u

⇤
· u

⇤T , and l = 0;
6 while l < IterNum do

7 Randomly sample v
(l) from N (µ,⌃);

8 Calculate (x(l)
,yl) = round(vl);

9 Calculate L
(l) = T

P
�
x(l)

,y(l)
,↵

⇤(x(l)
,y(l))

�
;

10 if L
(l)

< L
best

then

11 L
best := L

(l);
12 (xbest

,ybest) := (x(l)
,y(l));

13 end

14 l := l + 1;
15 end

length J . P can be written in the form of Q ·Q
T . Therefore,

P is positive semidefinite, i.e., P < 0. The only non-convex
constraint in (18) is U = u · u

T . By relaxing U = u · u
T to

U < u ·u
T and adding constraint uj(1�uj)  1, (18) can be

relaxed to a convex optimization problem as follows:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i 2 I,

dTm,lu  Am,l for m 2 M, l 2 L,

diag(U)  u · uT ,

�����

"
U u

uT 1

#
< 0.

(19)

The last constraint in (19) holds if and only if U < 0 and
U � u · u

T < 0, which can be proved by exploiting Schur
complement. Let (u⇤

, U
⇤) be the optimal solution to (19).

Since (19) is a relaxation of P1, the optimal objective value
of (19) is a natural lower bound of the minimum value of P1.

Next, we show a physical interpretation of the semidefinite
relaxation (19). Let v be a J-dimensional joint normal random
vector. Let µ and ⌃ be the mean and covariance matrix of
v, respectively. That is, v ⇠ N (µ,⌃). Then, from [26], if
constraint diag(U)  u · u

T is not in (19), µ = u
⇤ and

⌃ = U
⇤
� µ · µ

T minimizes the following problem:

min E
h
vTPv + qT v

i

s.t. E
h
hT
i v

i
= 1 for i 2 I

E
h
dTm,lv

i
 Am,l for m 2 M, l 2 L.

(20)

Intuitively, v drawn from N (µ,⌃) under µ = u
⇤ and ⌃ =

U
⇤
�µ ·µ

T has a cost close to the optimal objective value of
(19). We can draw a number of samples from N (µ,⌃) with
µ = u

⇤ and ⌃ = U
⇤
�µ ·µ

T , round each of them to a feasible
point, and choose the feasible point with the lowest cost. Let
round be the operator rounding u to a feasible solution to P1.
A specific rounding algorithm is proposed in the following

Algorithm 2: Round (Rounding Algorithm)
Input: Fn, n 2 N , fi, i 2 I, Am,m 2 M, ai, i 2 I,

ti, i 2 I, xc, and yc

Parameter: IterNum

Output: A feasible solution to P1: (xfsb
,yfsb)

1 IF := ;, IS := I, l := 1,xfsb = 0,yfsb = 0;
2 while 9j 2 I,m 2 M such that aj  Am do

3 i := argmax
j2IS

max{ycj,1, · · · , y
c
j,M};

4 m
⇤ := arg max

m2M

y
c
i,m;

5 if ai  Am⇤ then

6 y
fsb
i,m := 0 for m 2 M\ {m

⇤
}, yfsbi,m⇤ := 1;

7 Am⇤ := Am⇤ � ai;
8 ai := 1;
9 y

c
i,m := 0 for i 2 I;

10 IF = IF [{i} and IS = IS \ {i};
11 else

12 y
c
i,m⇤ := 0;

13 end

14 end

15 x
fsb
i,n := 0 for i 2 I and n 2 N ;

16 x
fsb
i,n⇤ := 1 for i 2 IS and n

⇤ = argmax
n

x
c
i,n;

17 while l < IterNum and 9i 2 IS such that

T
P
i (xfsb)

(a)
< min

n2N

p
fi/�i,n
Fn

(
p
fip
�i,n

+
P
j2I

xj,n

p
fj

p
�j,n

) do

18 Randomly choose an i satisfying inequality (a);

19 n̂ := argmin
n

p
fi/�i,n
Fn

(
p
fip
�i,n

+
P
j2I

xj,n

p
fj

p
�j,n

);

20 x
fsb
i,n := 0 for n 2 N \ {n̂} and x

fsb
i,n̂ := 1;

21 l := l + 1;
22 end

section. We then formally state the proposed algorithm, named
SDPR, for P1 in Algorithm 1.

In step 2 of Algorithm 1 (SDPR), we can solve (19)
by the interior point method with the time complexity of
O(J7 log(✏�1)) [27]. The time complexity for solving (19)
plus the time complexity of the rounding process is the
time complexity of Algorithm 1. The time complexity of the
rounding process is much faster than solving (19), which is
validated by numerical simulations.

C. Rounding the Solution of the Semidefinite Relaxation
Next, we propose a rounding algorithm that rounds vector

v of length J to a feasible solution (x,y) for P1. Before
the rounding process, we unzip v to (xc

,yc), where v is the
input vector. In particular, xc

i,n = v(n�1)·I+i for i 2 I and
n 2 N and y

c
i,m = v(N+m�1)·I+i for i 2 I and m 2 M. The

rounding algorithm is formally stated in Algorithm 2.
We first consider rounding yc to a feasible y, where y is an

I-by-M binary matrix, ym is the m
th column of y. We sort

WDs I by the value of max
m

y
c
i,m in descending order. WDs

in the order take turns to round {y
c
i,m|m 2 M} to {yi,m|m 2

M}. In particular, WD i set yi,m = 1 if m = argmax
m0

y
c
i,m0

and ai is no greater then the available space of FPGA m, and

yi,m = 0 otherwise. Let IF be the set of WDs offloading its
tasks to M, i.e., i 2 IF if and only if

P
m2M

yi,m = 1. Then,
since we have the constraint that

P
m2M

yi,m+
P

n2N
xi,n =

1, we have xi,n = 0 for i 2 IF . That is, we only need to
consider xi,n for i 2 IS , I \ IF in the following.

Then, we consider rounding x
c
i,n to binary for i 2 IS and

n 2 N . Each WD i sets xi,n to 1 if n = argmax
n0

x
c
i,n0 and

sets xi,n to 0 otherwise. Then, WDs in IS take turns to adjust
their decision. To be more specific, if xi,n = 1 and there exists
n̄ 2 N such that moving WD i from n to n̄ can lower the
latency of WD i given other WDs’ decisions, WD i resets
xi,n̄ = 1 and xi,n = 0 for n 6= n̄. We can set a maximum
number of iterations for WDs to adjust their decisions. In fact,
if there is no limit for maximum iteration, it can be proved that
the decision adjustment process for WDs in IS will terminate
after a finite number of iterations (see [28] for details).

The time complexity of rounding y (Line 1-14) is O(I2 ·
log(I)) and the time complexity of rounding x (Line 15-22)
is O(IN + I · IterNum). That is, the time complexity of the
rounding algorithm is polynomial to the system parameters.

V. ALGORITHM DESIGN FOR AP SELECTION AND
COMMUNICATION RESOURCE MANAGEMENT

In this section, we focus on designing an algorithm for JAM.
First, we show the hardness of JAM. Then, we propose an
algorithm for solving JAM.

The hardness of JAM is shown in Theorem 3.

Theorem 3. JAM is strongly NP-hard, and there is no fully
polynomial-time approximation scheme (FPTAS) and pseudo-
polynomial time algorithm for JAM.

The proof of Theorem 3 is similar to that of Theorem 1 in
[9], so we omit it.

A. Communication Resource Management Under Given AP
selection Decisions

We first consider finding communication resource manage-
ment variables � under any given AP selection decision z. If
z is given, JAM is equivalent to the following problem.

min
�

X

i2I

⇣
T

C
i (z,�) + TC

i (z,�)
⌘

s.t.
X

i2Ok(z)

�i,k  1,
X

i2Ok(z)

�
i,k

 1 for k 2 K

�i,k 2 [0, 1] for i 2 Ok(z) and k 2 K

�
i,k

2 [0, 1] for i 2 Ok(z) and k 2 K.

(21)

We use �
⇤(z) = {�

⇤

i,k|k 2 K, i 2 Ok(z)} [{�
⇤

i,k
|k 2

K, i 2 Ok(z)} to denote the optimal solution of (21) under
AP selection decision z. The optimal communication resource
management decision �

⇤(z) is shown in Lemma 2.

Lemma 2. For any feasible z, optimal communication re-
source management decision �

⇤(z) is as follows:

�
⇤

i,n =

p
ci/�i,kP

j2Ok(z)

p
cj/�j,k

for k 2 K, i 2 Ok(z), (22)

�⇤

i,n
=

p
ci/�i,k

P
j2Ok(z)

q
cj/�j,k

for k 2 K, i 2 Ok(z). (23)

The proof of Lemma 2 is omitted due to space limitations.
The main idea of Lemma 2 is to derive the optimal solution
by exploiting KKT conditions.

Substituting �
⇤ into (21), the optimal communication la-

tency under AP selection decision z is equal to
X

i2I

�
T

C
i + TC

i

�
=

X

k2K

X

i2Ok(z)

T
C
i +

X

k2K

X

i2Ok(z)

TC
i

=
X

k2K

1

Bk

X

i2Ok(z)

p
ci/�i,k

⇣ X

j2Ok(z)

p
cj/�j,k

⌘

+
X

k2K

1
Bk

X

i2Ok(z)

q
ci/�i,k

⇣ X

j2Ok(z)

q
cj/�j,k

⌘
.

(24)

For the sake of convenience, we introduce some short-formed
terms as follows. Let R , {(k, upload), (k, download)|k 2

K}, where each element in set R is a tuple representing a kind
of communication resource. For example, (k, upload) and
(k, download) represent the uploading and downloading band-
width resources of AP k, respectively. For each resource r 2

R, there is a weight mr associated with it. In particular, mr =
1
Bk

if r = (k, upload) and mr = 1
Bk

if r = (k, download).
For each WD i, let Zi be the set of all feasible zi. In particular,
from the constraints of JAM, we have Zi =

�
zi
��P

k2K
zi,k =

1,
P

k2K
zi,k = 1, and zi,k, zi,k 2 {0, 1}

. For any given

zi 2 Zi, zi decides the uploading AP and the downloading
AP of WD i, and we use Ri(zi) to denote resources that
WD i chooses. For example, if WD i chooses AP k1 and
AP k2 as its uploading and downloading APs respectively, we
have Ri(zi) = {(k1, upload), (k2, download)}. Let pi,r be a
value corresponding with the pair of WD i and resources r.
In particular, pi,r =

p
ci/�i,k if r = (k, uploading), and let

pi,r =
p
ci/�i,k if r = (k, downloading). In addition, for

each r 2 R, there is a value pr, which is a function of z.
In particular, pr(z) =

P
i2Ok(z)

pi,k if r = (k, upload), and
pr(z) =

P
i2Ok(z)

p
i,k

if r = (k, download).
Then, substituting (24) and the terms defined above into

JAM, we have that JAM is equivalent to P2 as follows:

min
z

TC(z) =
X

i2I

TC
i (z) =

X

i2I

X

r2Ri(zi)

mrpi,rpr(z)

s.t. zi 2 Zi, i 2 I.

(P2)

B. Algorithm Design for AP Selection
Next, we propose an algorithm, called generalized Conges-

tion Game Based Algorithm (CGBA), for P2 in Algorithm 3.
CGBA has a parameter � � 0 that we can tune. We use
CGBA(�) to denote CGBA with parameter �. We use ẑ to
denote the AP selection decision made by Algorithm 3, and
use z⇤ = (z⇤1, · · · , z

⇤

I) to denote the optimal AP selection

Algorithm 3: CGBA(�)
Input: Bk, Bk for k 2 K, ci, ci for i 2 I,

�i,k for i 2 I, k 2 K

Output: A feasible solution to P2: ẑ
1 Initialization: choose zi from Zi randomly for k 2 K;
2 while {9i 2 I, (1� �)TC

i (z) > min
z̄i2Zi

T
C
i (z̄i, z�i)} do

3 i := argmax
j2I

n
T

C
j (z)� min

z̄j2Zj

T
C
i (z̄i, z�i)

o
;

4 ẑi := argminz̄i2Zi T
C
i (z̄i, z�i);

5 z := (ẑi, z�i);
6 end

7 ẑ := z;

decision. In addition, z�i represents the decision of all WDs
except WD i, i.e., z = (z�i, zi).

In what follows, we analyze the performance of CGBA(�).
First, we show that P2 can be interpreted as an exact potential
game, as shown in Lemma 3.

Lemma 3. There exists an potential function P (z) such that
T

C
i (zi, z�i)�T

C
i (z̄iz�i) = P (zi, z�i)�P (z̄i, z�i) holds for

all feasible zi, z̄i, and z�i, and P (z) < T
C(z) holds for all

feasible z.

The proof of Lemma 3 is standard and can be found in
[7], [9], [29], so we omit it. Based on Lemma 3, we have the
performance guarantee for CGBA(0) as shown in the following
theorem.

Theorem 4. CGBA(0) terminates to a decision ẑ with 2.62 ·
T

C(z⇤) � T
C(ẑ) after a finite number of iterations.

The approximation ratio in Theorem 4 is a special case of
Theorem 5, and Lemma 3 implies that the algorithm terminates
after a finite number of iterations [30]. The theorem shows
that CGBA(0) is a 2.62-approximation algorithm. Note that
each iteration of CGBA takes polynomial time, where the
proof is straightforward and omitted due to space limitations.
Simulation results show that the time complexity of CGBA(0)
is linear to I and the average cost under CGBA(0) is around
1.02⇥ the optimum. Then, we consider the case that � > 0.
To show the performance of CGBA(�) with � > 0, we first
introduce a Lemma appears in [29] as follows.

Lemma 4. Let z be any feasible decision and z⇤ be
the optimal decision, then we have

P
i2I

T
C
i (z⇤i , z�i) p

TC(z)TC(z⇤) + T
C(z⇤).

Next, the performance guarantee for CGBA(�) is as follows.

Theorem 5. For � 2 (0, 1
8], CGBA(�) generates a decision

ẑ with T
C(ẑ) 

2.62
1�8�T

C(z⇤) in at most O
�
I
� log(P

0

P⇤)
�

iterations.

P
0 and P

⇤ are the initial and the minimum value of the
potential function P (z), respectively, and both P

0 and P
⇤

are finite positive values. The proof of Theorem 5 is found in
our technical report [28].

VI. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
algorithms under a wide range of settings. We implement our
simulations using MATLAB R2021a in a DELL Alienware
desktop with 32GB RAM and AMD Ryzen7 2700X Eight-
Core Processor running of Windows 10 OS.

A. Simulation Setup
The computing capability of each server is measured by

floating-point operations per second (FLOPS), and the capacity
of each server i is set to the real-world FLOPS of EC2 in-
stances from [31]. We consider a system with N = 10 general-
purpose servers (servers) and M = 5 FPGAs. Task size of
WDs fi, i 2 I are drawn from the real-world computing
complexity (in terms of floating-point operations (FLOPs)) of
6 neural network models, the first six entries of Table 5 in [32].
Similar to [14], �i,n is drawn from [0.5, 1]. We set the numbers
of CLBs and DSP slices are the two bottleneck resources,
i.e., L = 2, and set Am,1,m 2 M and Am,2,m 2 M

to real-world values of different types of FPGAs [33]. The
number of CLBs required for implementing a fuzzy neural
network varies with network size, where the numbers of CLBs
required for implementing fuzzy neural networks with 60 input
neurons, 10 to 18 neurons in the hidden layer, and three output
neurons are in the range from 5000 to 6000 [34]. We drew
the number of CLBs required of WDs from [4000, 8000] and
the number DSP slices of WDs from [20, 40]. From [3], [4],
ti,m, i 2 I,m 2 M are set to 10 to 60 times faster than the
optimal average latencies of WDs on servers under the case
that I = 100 and M = 0. The number of WDs varies in
different simulations and will be specified in the following.

We assume WDs are located in a square area of 1km⇥1km,
similar to that used in [7]. We divide the 1km⇥1km area into
six 1/3km ⇥ 1/2km subareas, and there are 6 APs located
in the center of the 6 subareas. WD i and an AP k can
communicate if the distance between them, denoted by di,k,
is less than 0.5km. For convenience, we set the bandwidth
of APs to the maximum achievable speed rather than its true
physical bandwidth. We randomly draw the uplink bandwidth
Bk from the set of [1, 3] Gbps and the downlink bandwidth
Bk from the set of [2, 5] Gbps. ci, i 2 [N] and ci, i 2 [N]
are randomly drawn from [0.1, 0.5] and [0.2, 1] Megabits,
respectively [9]. The parameter of bandwidth utilization ratio
�i,k corresponding to WD i and AP k is randomly chosen
from 0.1 to 1.

B. Baselines
We use three baselines for comparison with SDPR. The first

baseline, named by MCMC, which is similar to the algorithm
proposed in [8]. MCMC is short for Monte Carlo Markov
Chain technique and is similar to the simulated annealing
technique. MCMC randomly chooses initial states (x,y) and
z for JOM and JAM, respectively. Then, at each iteration,
MCMC chooses a neighbor of the previous decision and
moves to the neighbor with a probability related to the cost
difference of the decisions. Details of MCMC can be found

50 60 70 80 90 100

Number of WDs

5

10

15

20
A

ve
ra

ge
 P

ro
ce

ss
in

g
La

te
nc

y Algorithm 1

Lower Bound

MCMC

HEAL

Fig. 2: Average Processing Latency

50 60 70 80 90 100

Number of WDs

3

4

5

6

7

8

9

10

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

La
te

nc
y

Algorithm 3

Lower Bound

MCMC

HEAL

Fig. 3: Average Communication Latency

50 60 70 80 90 100

Number of WDs

5

10

15

20

25

30

35

A
v
e

ra
g

e
 L

a
te

n
c
y

Alg.1+Alg.3
Lower Bound

MCMC
HEAL

Fig. 4: Average Total Latency

in Algorithm 1 of [8]. The second baseline is named HEAL
(short for HEuristic ALgorithm), similar to the baseline used
in [14]. For JOM, HEAL first chooses y by a greedy algorithm
similar to the greedy algorithm [35] for the knapsack problem.
In particular, HEAL sorts WDs in ascending order of ti,m, and
WDs in the order take turns to be placed on an FPGA until
there is no sufficient space available. Then, HEAL chooses
x for WDs that are not placed on M. In particular, HEAL
chooses the best server n for each i under the assumption that
there is no other WD. HEAL chooses the optimal computing
resource allocation decisions under the selected (x,y). For
JAM, HEAL chooses the best uplink and downlink AP for
each i under the assumption that there is no other WD
and chooses the optimal communication resource allocation
decisions under the selected z. Moreover, we also compare
the performance of our algorithms and corresponding lower
bounds (LB). Lower bounds of JOM and JAM are set to
the optimal objective values of the convex SDP relaxation
problems of JOM and JAM got by the cvx solver, respectively.

C. Simulation Results
We first compare the performance of SDPR (Algorithm 1)

with that of MCMC, HEAL, and LB. Figure 2 shows that
the average latencies of SDPR (Algorithm 1), MCMC, HEAL
and LB under I = {50, 60, · · · , 100}. SDPR (Algorithm 1)
outperforms MCMC and HEAL under all the settings of I .
From Figure 2, the average ratio of the latency under SDPR
(Algorithm 1) to the optimal objective value of the SDP
relaxation of JOM (lower bound) is around 1.05. As I , the
number of WDs, increases, the average latency increases due
to congestion. In addition, simulation results show that the
time complexity of Algorithm 1 (in terms of the running time)
is linear to I , which shows that SDPR has good scalability.
We then compare the average communication latencies of
CGBA(0) (Algorithm 3) and that of the baselines under I =
{50, 60, · · · , 100}. As shown in Figure 3, the communication
latency of CGBA(0) (Algorithm 3) is lower than that of MCMC
and HEAL under all different settings of I . As I increases, the
average latencies of CGBA(0) (Algorithm 3) and the baselines
increase due to congestion. In addition, we use the objective
value of an SDP relaxation of JAM as a lower bound of the
optimal objective value. As shown in Figure 3, the average
ratio of the latency of CGBA(0) (Algorithm 3) to the lower

0 0.02 0.04 0.06 0.08 0.1

parameter

148

150

152

154

156

158

160

162

T
im

e
 C

o
m

p
le

xi
ty

4.9

4.92

4.94

4.96

4.98

5

L
a
te

n
cy

Time Complexity
Communication Latency

Fig. 5: Trade-off Between
Communication Latency and
Time Complexity

50 60 70 80 90 100

Number of WDs

60

80

100

120

140

160

180

T
im

e
 C

o
m

p
le

xi
ty

=0

=0.1

Fig. 6: Time Complexity vs.
Number of WD under � = 0
and � = 0.1

bound is around 1.02. By merging Figure 3 and Figure 2, the
total latency (processing latency plus communication latency)
is shown in Figure 4.

Next, we show the performance of CGBA (Algorithm 3)
under different �. In Figure 5, we show the time complexity
and communication latency under different settings of �. From
Figure 5, there is a trade-off between the time complexity
and the objective value (communication latency) of CGBA(�).
As � increases, the time complexity decreases, and the com-
munication latency increases, which matches the statement in
Theorem 5. The time complexity of Algorithm 3 (in terms of
the number of iterations) is linear to the number of WDs under
different settings of � as shown in Figure 6.

VII. CONCLUSION

In this paper, we have studied the joint task offloading, AP
selection, and resource allocation problem (JOAM) in hetero-
geneous edge environments to minimize the overall system
latency. We decomposed JOAM into two subproblems, namely
JOM and JAM. We designed an algorithm named SDPR for
JOM based on semidefinite relaxation and proposed a 2.62-
approximation algorithm named CGBA for JAM. We proved
that there is a trade-off between the approximation ratio and
the time complexity of CGBA. Simulation results have shown
that the proposed algorithms outperform the popular baselines
and are near-optimal. In particular, the average processing
latency under SDPR is around 1.05 times the optimum, and the
average communication latency under CGBA is around 1.02
times the optimum.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-based
neural network accelerator,” arXiv preprint arXiv:1712.08934, 2017.

[3] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator effi-
ciency through resource partitioning,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017, pp.
535–547.

[4] P. Milder, “Advanced digital system design and generation [powerpoint
slides].” in ESE 507 Blackboard, 2021.

[5] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
fpgas in hyperscale data centers,” in UIC-ATC-ScalCom. IEEE, 2015,
pp. 1078–1086.

[6] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
fpgas for data center applications,” in 2016 International Conference on
Field-Programmable Technology (FPT), 2016, pp. 36–43.

[7] S. Jošilo and G. Dán, “Wireless and computing resource allocation for
selfish computation offloading in edge computing,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 2467–2475.

[8] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2076–2085.

[9] S. Jošilo and G. Dán, “Joint wireless and edge computing resource man-
agement with dynamic network slice selection,” IEEE/ACM Transactions
on Networking, pp. 1–14, 2022.

[10] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018.

[11] T. Liu, Y. Zhang, Y. Zhu, W. Tong, and Y. Yang, “Online computation
offloading and resource scheduling in mobile-edge computing,” IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6649–6664, 2021.

[12] H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computation
energy efficiency maximization in a mobile edge computing system,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 3052–
3056, 2019.

[13] A. Al-Shuwaili, O. Simeone, A. Bagheri, and G. Scutari, “Joint up-
link/downlink optimization for backhaul-limited mobile cloud comput-
ing with user scheduling,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 3, no. 4, pp. 787–802, 2017.

[14] Y. Liu, X. Shang, and Y. Yang, “Joint sfc deployment and resource
management in heterogeneous edge for latency minimization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2131–2143, 2021.

[15] C. You, Y. Zeng, R. Zhang, and K. Huang, “Asynchronous mobile-edge
computation offloading: Energy-efficient resource management,” IEEE
Transactions on Wireless Communications, vol. 17, no. 11, pp. 7590–
7605, 2018.

[16] S. I. Venieris and C.-S. Bouganis, “f-cnnx: A toolflow for mapping
multiple convolutional neural networks on fpgas,” in 2018 28th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2018, pp. 381–3817.

[17] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 845–858.

[18] O. Knodel, P. Lehmann, and R. G. Spallek, “Rc3e: Reconfigurable
accelerators in data centres and their provision by adapted service mod-
els,” in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), 2016, pp. 19–26.

[19] P. Chanclou and e. Pizzinat, “Optical fiber solution for mobile fronthaul
to achieve cloud radio access network,” in 2013 Future Network Mobile
Summit, 2013, pp. 1–11.

[20] S. Jošilo and G. Dán, “Decentralized scheduling for offloading of
periodic tasks in mobile edge computing,” in 2018 IFIP Networking
Conference (IFIP Networking) and Workshops, 2018, pp. 1–9.

[21] R. K. James, K. P. Jacob, and S. Sasi, “Performance analysis of double
digit decimal multiplier on various fpga logic families,” in 2009 5th
Southern Conference on Programmable Logic (SPL). IEEE, 2009, pp.
165–170.

[22] Wikipedia contributors, “5g nr frequency bands — Wikipedia, the free
encyclopedia,” 2022.

[23] Nvidia Developers, “Multi-process service (mps).” [Online].
Available: https://docs.nvidia.com/deploy/pdf/CUDA Multi Process
Service Overview.pdf

[24] S. Jošilo and G. Dán, “Wireless and computing resource allocation for
selfish computation offloading in edge computing,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 2467–
2475.

[25] T. F. Gonzalez, Handbook of approximation algorithms and metaheuris-
tics. Chapman and Hall/CRC, 2007.

[26] P. Wang, C. Shen, A. v. d. Hengel, and P. H. S. Torr, “Large-scale
binary quadratic optimization using semidefinite relaxation and applica-
tions,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 3, pp. 470–485, 2017.

[27] H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song, “A faster
interior point method for semidefinite programming,” in 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), 2020,
pp. 910–918.

[28] Y. Liu, Y. Mao, Z. Liu, and Y. Yang, “Technical report for paper “joint
task offloading and resource allocation in heterogeneous edge envi-
ronments”,” [Online]. Available: https://drive.google.com/drive/folders/
1tGDTLkvd9va 14LaBOVncI49aq66aUa-?usp=sharing.

[29] B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrokni, and A. Skopalik,
“Fast convergence to nearly optimal solutions in potential games,” in
Proceedings of the 9th ACM conference on Electronic commerce, 2008,
pp. 264–273.

[30] Y. H. Chew, B.-H. Soong et al., Potential game theory. Springer, 2016.
[31] J. Emeras, S. Varrette, V. Plugaru, and P. Bouvry, “Amazon elastic

compute cloud (ec2) versus in-house hpc platform: A cost analysis,”
IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 456–468,
2019.

[32] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848–6856.

[33] Virtex Developers, “Virtex-5 fpga feature summary,” [Online]. Available:
https://inst.eecs.berkeley.edu/⇠cs150/sp09/Lecture/lec03-fpga.pdf.

[34] S. R. Chowdhury and H. Saha, “Development of a fpga based fuzzy
neural network system for early diagnosis of critical health condition
of a patient,” Computers in biology and medicine, vol. 40, no. 2, pp.
190–200, 2010.

[35] G. Dantzig, 26. Discrete-Variable Extremum Problems. Princeton
University Press, 2016.

